Abstract:
Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides.
Abstract:
A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
Abstract:
Consistent with the present disclosure, a photonic integrated circuit (PIC) is provided that has 2 N channels (N being an integer). The PIC is optically coupled to N optical fibers, such that each of N polarization multiplexed optical signals are transmitted over a respective one of the N optical fibers. In another example, each of the N optical fibers supply a respective one of N polarization multiplexed optical signals to the PIC for coherent detection and processing. A multiplexer and demultiplexer may be omitted from the PIC, such that the optical signals are not combined on the PIC. As a result, the transmitted and received optical signals incur less loss and amplified spontaneous emission (ASE) noise. In addition, optical taps may be more readily employed on the PIC to measure outputs of the lasers, such as widely tunable lasers (WTLs), without crossing waveguides.
Abstract:
A device may include a first substrate. The device may include an optical source. The optical source may generate light when a voltage or current is applied to the optical source. The optical source may be being provided on a first region of the first substrate. The device may include a second substrate. A second region of the second substrate may form a cavity with the first region of the first substrate. The optical source may extend into the cavity. The device may include an optical interconnect. The optical interconnect may be provided on or in the second substrate and outside the cavity. The optical interconnect may be configured to receive the light from the optical source.
Abstract:
A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
Abstract:
Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel. As a result, yields and minimum performance may improve compared to PICs that do not have a spare channel and manufacturing costs may be reduced. Alternatively, connections, such as fiber connections, may be made only to the operation or best performing channels.
Abstract:
Consistent with the present disclosure, the back side of a chip is attached to a lid structure. Legs are attached or integrated monolithically to the lid such that the legs are provided in and around the periphery of the lid and are designed in such a way as to not interfere with the optical output/input (facet) of the PIC, for example, by not putting the leg or a portion of the leg in front of the optical output/input region of the PIGC. Since the lid, to which the chip is attached, is secured to the substrate, the electrical connections between the chip and the substrate are also subject to little, if any, mechanical stress, thereby obviating the need for the underfill. Accordingly, electrical traces on the chip and the substrate do not contact a high dielectric constant material, and, as a result, impedance and loss may be reduced. Moreover, optical devices, if integrated on the chip as in a PIC, are not subject to stresses caused by underfill so that the optical properties of such devices may be preserved.
Abstract:
A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
Abstract:
A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
Abstract:
An optical transceiver package comprising a transceiver module, a digital signal processor (DSP), a substrate supporting the transceiver module and the DSP, and a barrier to mechanically protect and thermally insulate the transceiver module. The substrate comprises a material having a coefficient of thermal expansion (CTE) of 2.3-14 ppm/° C. and the barrier comprises a material having a CTE of 3.5-14 ppm/° C.