Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a Physical Layer Convergence Procedure (PLCP) Protocol Data Unit (PPDU). For example, an apparatus may include circuitry and logic configured to cause a wireless station to transmit a first PPDU to a second wireless station, the first PPDU including a preamble, a header, and a first PLCP Service Data Unit (PSDU), the header including a synchronization (sync) indicator to indicate that the second wireless station is to synchronize a second PPDU to the first PPDU; and to receive the second PPDU from the second wireless station, the second PPDU spaced from the first PPDU by less than a Short Inter Frame Space (SIFS), the second PPDU including a Byte Count, and a second PSDU, the second PPDU including no preamble or a short preamble, which is shorter than the preamble of the first PPDU.
Abstract:
Exploratory beamforming training techniques for 60 GHz devices are described. In one embodiment, for example, an apparatus may comprise a station (STA) comprising logic, at least a portion of which is in hardware, the logic to identify an exploratory link quality associated with an exploratory beamforming configuration for a directionally-beamformed wireless link, determine whether to revert to a previous beamforming configuration for the directionally-beamformed wireless link based on the exploratory link quality, and in response to a determination to revert to the previous beamforming configuration, send a frame comprising a rollback notification for the directionally-beamformed wireless link. Other embodiments are described and claimed.
Abstract:
Devices and methods of limiting wideband STA communication are generally described. The STA receives, over a primary channel, a wakeup frame containing an indication of a SP or CBAP to acquire a wideband TXOP over a wide bandwidth channel including the primary channel and a secondary channel and a control trailer having an indication of the wide bandwidth channel. Prior to the SP/CBAP, the STA opens reception from the primary channel to the wide bandwidth channel. The STA then communicates with another STA over the wide bandwidth channel and subsequently reduces reception from the wide bandwidth channel to the primary channel. The wakeup frame originates from an AP/PCP or the other STA, and contains fields indicating the wakeup frame length and SP or a sensing time length prior to the CBAP.
Abstract:
Embodiments of a station (STA) and method for communication on primary and secondary channel resources are generally described herein. The STA may transmit a grant frame to indicate a transmission of a data payload by the STA during a grant period. The grant frame may indicate whether the data payload is to be transmitted on primary channel resources or on secondary channel resources. The STA may transmit the data payload to a destination STA on the secondary channel resources when the grant frame indicates that the data payload is to be transmitted on the secondary channel resources. The grant frame may be transmitted on the primary channel resources and on the secondary channel resources when the grant frame indicates that the data payload is to be transmitted on the secondary channel resources.
Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques to determine a first frequency offset for a first band of communication based on one or more packets communicated by a first transceiver, determine a second frequency offset for a second band of communication based on the first frequency offset, and process one or more packets of information communicated on the second band of communication via a second transceiver based on the second frequency offset.
Abstract:
Techniques to enable dynamic bandwidth management at the physical layer level while maintaining backwards compatibility in wireless systems is provided. Furthermore, techniques for reducing the occurrence of exposed nodes are provided. A transmitter may transmit a frame including an indication that a PHY layer sub-header defining a bandwidth associated with a channel is present. Furthermore, the transmitter may transmit a third frame after receiving a second frame from a receiver to indicate to legacy stations that the TXOP was successful.
Abstract:
This disclosure describes methods, apparatus, and systems related to a modulation and coding scheme (MCS) system. The device may determine a wireless communications channel with a first device in accordance with a wireless communications standard. The device may generate a header in accordance with a communication standard, the header including, at least in part, a modulation and coding scheme (MCS) index value. The device may determine a code rate associated with the MCS index value based at least in part on the wireless communications channel. The device may cause to send the header to the first device over the wireless communications channel based at least in part on the MCS index value.
Abstract:
Methods and apparatus for multi-destination wireless transmissions as disclosed. An example multi-destination transmitter includes a direction determiner to determine directions for wireless transmission of data to destination devices and a transmission handler to: select a subset of the destination devices that are associated with different ones of a plurality of antennas as indicated by the directions determined by the direction determiner; and transmit the data to the subset of the destination devices via the plurality of antennas.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of multi-user (MU) wireless communication. For example, a wireless station may generate a MU Physical Layer Convergence Protocol (PLCP) Protocol Data Unit (PPDU) including a header field and a plurality of Spatial Streams (SSs) of Media Access Control (MAC) Protocol Data Units (MPDUs) to a plurality of users, the header field including an indication of a plurality of modulation schemes corresponding to respective ones of the plurality of users; and process transmission of the MU PPDU to the plurality of users over a wireless communication band.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of communicating a wireless transmission according to a Physical Layer scheme. For example, a wireless station may be configured to generate a frame including a header and a data portion, the header including a modulation and coding scheme (MCS) value of an Orthogonal Frequency Divisional Multiplexing (OFDM) Physical layer (PHY) scheme or a Low Power Single Carrier (LPSC) PHY scheme; modulate and encode the header according to a Single Carrier (SC) PHY scheme; modulate and encode the data portion according to the OFDM PHY scheme or the LPSC PHY scheme; and process transmission of the frame.