摘要:
Described herein are embodiments of a system for receiving wireless power from a high-Q resonator that include a base for a portable device, having surfaces that are shaped to mechanically hold to outer surfaces of a portable device, and having a high-Q magnetic resonator therein, said resonator formed of a coil portion in series with a capacitive portion, said resonator having an LC value which is tuned to a specified frequency.
摘要:
Described herein are embodiments of a wireless power system that include a signal generator, having a connection to a source of power, and which creates a substantially unmodulated signal at a first frequency, a transmitting high-Q resonator, generating a magnetic field having said first frequency and based on power created by said signal generator, a receiving high-Q resonator, receiving a magnetic power signal created by said transmitting resonator, said receiving resonator being a distance greater than 1 m spaced from said transmitting resonator, and a load receiving part, receiving power from said receiving resonator, wherein a transfer efficiency between said transmitting resonator and said receiving resonator is greater than 25% at 1 m of distance between said transmitting resonator and said receiving resonator.
摘要:
Described herein are embodiments of a wireless power transmitter device for transmitting power to at least one high-Q resonator that includes a first portion, formed of a high-Q magnetic resonator, and a high frequency generation system, having a number of components, wherein at least one of said components is formed using a process which creates nanoscale features.
摘要:
Described herein are embodiments of a source resonator optionally coupled to an energy source, and a second resonator, optionally coupled to an energy drain that may be located a distance from the source resonator. The source resonator and the second resonator may be coupled to provide κ/sqrt(Γ1Γ2)>0.2 via near-field wireless energy transfer among the source resonator and the second resonator over distances up to at least the characteristic size of a resonator.
摘要:
Described herein are embodiments of a source high-Q resonator, optionally coupled to an energy source, and a second high-Q resonator, optionally coupled to an energy drain that may be located a variable distance from the source resonator. The source resonator and the second resonator may be coupled to transfer electromagnetic energy from said source resonator to said second resonator over a distance D that is smaller than each of the resonant wavelengths λ1 and λ2 corresponding to the resonant frequencies ω1 and ω2, respectively.
摘要:
Described herein are embodiments of transmitting power wirelessly that include driving a high-Q non-radiative resonator at a value near its resonant frequency to produce a magnetic field output, said non-radiative-resonator formed of a combination of resonant parts, including at least an inductive part formed by a wire loop, and a capacitor part that is separate from a material forming the inductive part, and maintaining at least one characteristic of said resonator such that its usable range has a usable distance over which power can be received, which-distance is set by a detuning effect when a-second resonator gets too close to said resonator.
摘要:
A waveguide structure is provided. The waveguide structure includes a photonic crystal structure comprising gyromagnetic materials arranged in a two-dimensional lattice formation that exhibits a plurality of one-way modes produced as a result of magneto-optic effects. One or more confining barriers are positioned around the photonic crystal structure so as to allow the one-way modes to propagate through the photonic crystal structure. One or more radiation sources are positioned in or around the photonic crystal structure so as to couple electromagnetic energy into and out of the waveguide. One or more static external magnetic field sources induce the magneto-optic effects such that the one-way modes are allowed to propagate in one direction in the photonic crystal structure.
摘要:
An optical modulator includes a crystal structure that exhibits polaritonic or excitonic behavior. A shock wave propagates through the crystal structure so as to optically modulate and manipulate a light signal propagating in the crystal structure.
摘要:
A photonic crystal structure includes a microcavity (point defect). The photonic crystal structure (or just the microcavity) is doped with materials that exhibit electro-magnetic induced transparency (EIT) so as to increase the non-linear properties of the photonic crystal.
摘要:
A device for bending a laser beam is provided. The device includes a beam deflection device that produces the beam having a selected number of addressable points. A soliton forming mechanism is positioned at the output of the beam deflection device so it receives the beam and increases the number of addressable points by a certain magnitude.