Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content, wherein the optical assembly comprises a partially reflective, partially transmitting optical element that reflects a portion of image light from the image source and transmits scene light from a see-through view of the surrounding environment, so that a combined image comprised of portions of the reflected image light and the transmitted scene light is provided to a user's eye.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content, wherein the image source comprises a lighting system that directs light from a light source to a curved polarizing film that reflects a portion of the light to a reflective image display. The ratio of the height of the curved polarizing film to the width of the reflective image display is less than 1:1.
Abstract:
Method of displaying a video of a scene onto a display with enhanced image quality, the video of the scene having first subframes and second subframes wherein the first subframes correspond to a first region of an image-presentation element of the display and the second subframes correspond to a second region of the image-presentation element; and selecting an access key corresponding to the first subframes. The method further includes encoding the access key into one or more of the second subframes; providing the second subframes to the display using a first data transport; the display, decoding the access key and receiving the corresponding first subframes using a second data transport different from the first data transport; and selectively providing the first and second subframes from the first and second data transports to corresponding regions in the image-presentation element of the display, whereby the displayed image has enhanced image quality.
Abstract:
Multiple images are captured where the exposure times for some of the images overlap and the images are spatially overlapped. Charge packets are transferred from one or more portions of pixels after particular integration periods, thereby enabling the portion or portions of pixels to begin another integration period while one or more other portions of pixels continue to integrate charge. Charge packets may be binned during readout of the images from the image sensor. Comparison of two or more images having different lengths of overlapping or non-overlapping exposure periods provides motion information. The multiple images can then be aligned to compensate for motion between the images and assembled into a combined image with an improved signal to noise ratio and reduced motion blur.
Abstract:
Multiple images are captured where the exposure times for some of the images overlap and the images are spatially overlapped. Charge packets are transferred from one or more portions of pixels after particular integration periods, thereby enabling the portion or portions of pixels to begin another integration period while one or more other portions of pixels continue to integrate charge. Charge packets may be binned during readout of the images from the image sensor. Comparison of two or more images having different lengths of overlapping or non-overlapping exposure periods provides motion information. The multiple images can then be aligned to compensate for motion between the images and assembled into a combined image with an improved signal to noise ratio and reduced motion blur.
Abstract:
The invention utilizes an autofocus system (806) that is capable of very fast changes in focus over a relatively small portion of the focus range of the focusing system. When operating continuously in a repeating series of images or frames such as are found in preview mode or in video capture, autofocus images are captured before and after each video frame wherein the autofocus images have different focus settings than the images in the series. The autofocus images are then evaluated for focus quality to determine whether focus adjustments are needed.
Abstract:
A method for displaying information on a see-through display to provide improved viewability of digital information to a user, includes: providing a see-through display including control electronics, an image source with optics and a transparent viewing area, so that a user can view a scene with overlying digital information on the transparent viewing area of the see-through display and receiving digital information and providing the digital information to the control electronics. The method further includes using the control electronics to modify the digital information to increase viewability and providing the modified digital information to the image source so that the modified digital information is presented on the transparent viewing area overlying the viewed scene.
Abstract:
Multiple images of a scene are acquired over a contemporaneous period of time. Most of the multiple images are lower resolution images acquired with a lower resolution than the other of the multiple images. A corrected set of images is formed at least by correcting for motion present between at least some of the lower resolution images. In addition, a synthesized image is formed at least by merging (a) at least a portion of at least one of the images in the corrected set of images, and (b) at least a portion of at least one of the other of the multiple images. The synthesized image is stored in a processor-accessible memory system. The synthesized image exhibits improved image quality including reduced motion blur, a higher signal-to-noise ratio, and higher resolution over conventional techniques.
Abstract:
Controlling a head-mounted display includes providing a head-mounted display, the head-mounted display includes a switchable viewing area that is switched between a transparent viewing state and an information viewing state. The transparent viewing state is transparent with respect to the viewing area and enables a user of the head-mounted display to view the scene outside the head-mounted display in the user's line of sight. The information viewing state is opaque with respect to the viewing area and displays information in the switchable viewing area visible to a user of the head-mounted display. An external environmental state detector provides an external stimulus notification in response to a detected change in the external environment and causes the viewing state to automatically switch in response to the external stimulus notification.
Abstract:
Control of a head-mounted display includes providing a head-mounted display, the head-mounted display includes a switchable viewing area that is switched between a transparent viewing state and an information viewing state. The transparent viewing state is transparent with respect to the viewing area and enables a user of the head-mounted display to view the scene outside the head-mounted display in the user's line of sight. The information viewing state is opaque with respect to the viewing area and displays information in the switchable viewing area visible to a user of the head-mounted display. A user-eye detector provides an external stimulus notification in response to a detected change in the state of the eye of the user; and causes the viewing state to automatically switch in response to the external stimulus notification.