Abstract:
A circuit breaker includes a digital electronic trip unit having a microprocessor. The front panel of the trip unit includes a potentiometer connected across a reference voltage, and a numeric display device. The potentiometer is adjusted by an operator to enter a value of a parameter defining the time-current characteristic of the circuit breaker. An analog-to-digital converter receives the voltage supplied by the potentiometer and converts it to a digital quantity for use by the microcomputer in performing limit checks with the current flow through the contacts of the breaker. The microcomputer formats the converted digital value of the potentiometer voltage and supplies it to a front panel-visible numeric display so that the value of the potentiometer setting as interpreted by the microcomputer in defining the time-current trip characteristic is presented on the numeric display to provide real-time feedback to the operator as he adjusts the parameter value.
Abstract:
A circuit breaker includes a microprocessor-based trip unit having an optically coupled data input/output system. A pulse transformer receives input pulses generated by the execution of instructions in said microcomputer and supplies these pulses to a plurality of optical isolators, thereby reducing the power requirements of the optically isolated interface system to a value sufficient to allow complete operating power to be supplied to the trip unit and the data input/output system from the sensing current transformers within the circuit breaker housing.
Abstract:
An energy-conserving solid-state-controlled illumination system which operates high-intensity-discharge lamps. The system operates the lamps at about a predetermined rated power consumption with a relatively high light output for a predetermined time when a high degree of illumination is desirable and thereafter operates the lamps at about a predetermined power less than rated power consumption when a lower degree of illumination can be tolerated.
Abstract:
A controllable circuit breaker includes a housing, first and second inputs adapted to receive respective external close and open signals, a third input adapted to receive a control voltage, a set of main contacts, an operating mechanism for opening and closing those contacts; a set of secondary contacts connected in series with the main contacts, and a latching solenoid including a plunger latchable to a first position which closes the secondary contacts and to a second position which opens the secondary contacts. When separately energized, first and second coils operate the plunger to respective first and second positions. The first and second coils have a common node which is electrically connected to the third input. A non-mechanical, electronic control circuit within the housing is adapted to receive the external close and open signals and responsively energize the first and second coils, respectively, for a predetermined time.
Abstract:
A sensor apparatus is for a power bus including a plurality of characteristics. The sensor apparatus includes a housing; one or more sensors each adapted to sense a characteristic of the power bus; and a circuit adapted to transmit or receive a wireless signal. A processor includes a low-power mode and a routine adapted to wake up from the low-power mode, to input the sensed characteristic from the one or more sensors, to output a corresponding signal to the circuit to transmit as the wireless signal, and to sleep in the low-power mode. A power supply is adapted to power the sensors, the circuit and the processor from flux arising from current flowing in the power bus. The power supply includes one or more voltages.
Abstract:
An arc fault/ground fault circuit interrupter for a power circuit includes a line terminal; a load terminal; and separable contacts electrically connected between the line and load terminals. An operating mechanism opens the separable contacts and has a closed position for closing the separable contacts. A trip mechanism cooperates with the operating mechanism to trip open the separable contacts. A ground fault protection circuit is operatively associated with the power circuit. An arc fault protection circuit is also operatively associated with the power circuit. A circuit tests the ground fault protection circuit, tests the arc fault protection circuit, and restores the operating mechanism to the closed position responsive to sequential activation of test and reset buttons.
Abstract:
A circuit breaker responds to sputtering arc faults by counting the times that a bandwidth limited di/dt signal exceeds a threshold magnitude within a selected time interval. In the exemplary circuit breaker, if the threshold is exceeded twice within a one second interval, a trip solenoid is energized. The di/dt sensor can share a sensing coil with a ground fault detector. Alternatively, the resistance of the neutral lead within the circuit breaker is utilized to sense current which is converted to a bandwidth limited di/dt signal for level detection and counting of sputtering arc events.
Abstract:
A low cost analog arcing detector and a circuit breaker incorporating such a detector provide a variable response time to arcing faults based upon the amplitude of the arcing current. A filter generates pulses having an amplitude proportional to the amplitude of the step increase in current generated by the striking of the arc. The pulses are rectified and the amount by which the single polarity pulses exceed a threshold value, selected to eliminate nuisance trips on current step increases characteristic of some common loads, is integrated by a capacitor connected to a resistor which continually adjusts the capacitor voltage in a sense opposite to that of the pulses. The capacitor and resistor are selected to generate a trip signal as a function of the accumulated, time attenuated magnitude of the step increases in current associated with each striking of the arc current. Preferably, the pulses are squared before the reference current is subtracted to provide faster response for large amplitude arc currents, while avoiding false trips caused by known loads. Preferably, the arcing detector is used with a ground current detector which provides further protection by tripping on ground currents flowing through carbon tracks deposited by arcing currents below the threshold of the arcing fault detector.
Abstract:
A motor starter includes separable contacts interconnected between an alternating current (AC) power source and an AC motor for switching an AC load current which flows from the power source and through the separable contacts; a dual-slope analog-to-digital (A/D) conversion circuit for sensing the load current and generating a current value; and a microcomputer with a coil drive circuit for selectively opening the separable contacts as a predetermined function of the current value. The dual-slope A/D conversion circuit includes current transformers for sensing the AC load current and for selectively providing a received current therefrom, a current reference for selectively providing a reference current, a multiplexer for multiplexing the currents, and a class B preamplifier for amplifying and rectifying the multiplexed AC current. The dual-slope A/D conversion circuit also includes a dual-slope integrator which generates an integration value by positively integrating the received current and by negatively integrating the reference current; a comparator which compares the integration value with a predetermined threshold value and generates a comparison signal for the microcomputer; and a bias amplifier for biasing the current transformers with a voltage which is about equal to a bias voltage of the preamplifier. The preamplifier, the dual-slope integrator, and the bias amplifier may each include a Norton amplifier.
Abstract:
A PC computer monitors the energy, power, voltage, and current consumed at a plurality of local stations placed behind the electrical meter of the utility company for individual billing of the local users, a bidirectional communication line being used therebetween. A command from the PC computer causes at each station the power, voltage, current and totalized energy to be stored, and thereafter the PC computer derives individually the results for separate estimations and central billing.