摘要:
A manufacturing method for 1,1,1,3,3-pentafluoropropane comprises a first process, in which 1,1,1-trifluoro-3-chloro-2-propene is obtained by inducing a reaction between 1,1,1,3,3-pentafluoropropane and hydrogen fluoride in the vapor phase, and a second process, in which the 1,1,1,3,3-pentafluoropropane is obtained by inducing a reaction between 1,1,1-trifluoro-3-chloro-2-propene and hydrogen in the vapor phase, and 1,1,1-trifluoro-3-chloro-2-propene obtained in the first process is supplied to the second process after removing the HCl by-products. This invention can provide a new economic manufacturing method of 1,1,1,3,3-pentafluoropropane with high yield and selectivity.
摘要:
A process of preparing a perfluoroalkylcarboxylic acid by an oxidative decomposition reaction of a perfluoroalkylethylene corresponding to a general formula:Rf--CH.dbd.CH.sub.2�wherein, Rf is a perfluoroalkyl group containing 2 to 14 carbon atoms.!to obtain a perfluoroalkylcarboxylic acid corresponding to a general formula:Rf--COOH�wherein, Rf is the same as the above.!characterized that the reaction is carried out in the presence of an organic solvent which is compatible with water and substantially inert to the above reaction, a ruthenium compound as a catalyst and an aqueous solution of at least one of hypochlorous acid or a salt thereof is provided.
摘要:
The present inventions provide manufacturing methods of 1,1,1,2,3-pentafluoropropene characterized by the reaction of removing HF by means of the contact of 1,1,1,2,3,3-hexafluoropropane in the gas state with active carbon or active carbon added with metallic salt. 1,1,1,2,3-pentafluoropropene can be produced from easily available 1,1,1,2,3,3-hexafluoropropane by cost-effective industrial methods at high yields according to these inventions. The inventions also provide manufacturing methods of 1,1,1,2,3-pentafluoropropane characterized by reducing 1,1,1,2,3-pentafluoropropene with hydrogen under the presence of a hydrogenation catalyst consisting of palladium added with one or more of silver, copper, gold, tellurium, zinc, chromium, molybdenum, and thallium or under the presence of a rhodium catalyst. The desired product can be produced at high reactivities and high selectivities according to these inventions.
摘要:
Fluorinating reagents expressed in a general formula; ##STR1## (In the general formula, R is an alkyl group having 1 to 5 carbons or a dialkylamino group in which each alkyl group has 1 to 3 carbons.), and a fluorinating method to fluorinate an alcoholic hydroxyl group by using the reagent. Raw materials of the aforesaid fluorinating reagents can be easily converted to object products and are less poisonous and corrosive. Their procurement and preparation are also easy. Further, it is easy to fluorinate compounds containing an alcoholic hydroxyl group by using this fluorinating reagents.
摘要:
1,1,1,4,4,4-Hexafluorobutane is prepared by reducing 2-chloro-1,1,1,4,4,4-hexafluorobutene-2 with hydrogen in the presence of a hydrogenation catalyst containing an alloy which contains at least one first metal component selected from the group consisting of platinum and palladium and at least one second metal component selected from the group consisting of silver, copper, gold, tellurium, zinc, chromium, molybdenum and thallium. 1,1,1,4,4,4-Hexafluorobutane can be prepared in a high selectivity and a high yield.
摘要:
1,1,1,2,2-Pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane are prepared in pure forms by reacting dichlorofluoromethane and tetrafluoroethylene, or chloroform, difluorochloromethane and tetrafluoroethylene in the presence of a catalyst comprising a halogenated zirconium of the formula:ZrCl.sub.x F.sub.y (I)wherein x and y are numbers which satisfy the relationships x+y=4, 0
摘要:
1,1,1,2,2-Pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane are prepared by reacting dichlorofluoromethane and tetrafluoroethylene in a solvent in the presence of a catalyst with improved conversion and selectivity.
摘要:
The present invention provides a preparation process for converting to a vinylidene fluoride elastomer having a group having sulfinic acid, sulfinic acid derivative, sulfonic acid or sulfonic acid derivative at one end or both ends of its trunk chain, and the preparation process provides a vinylidene fluoride elastomer having, at one end or both ends of its trunk chain, end groups represented by the formula: —CR1R2—CR3R4—SO2H, wherein R1 to R4 may be the same or different and each is hydrogen atom or fluorine atom, by allowing a vinylidene fluoride elastomer having, at one end or both ends of its trunk chain, end groups represented by the formula: —CR1R2—CR3R4—X1, wherein R1 to R4 are as defined above, X1 is bromine atom or iodine atom, to react with a sulfur compound represented by the formula: (M1)nH2-nS2O4, wherein M1 is a monovalent or divalent metal ion or ammonium ion, n is an integer of 0 to 2.
摘要:
There is provided a fluorine-containing polymer having an ionic group which has a heteroaromatic ring and is useful as a material comprising various heteroaromatic ring compounds having a stable fluorine-containing heteroaromatic ring, and further fluorine-containing polymer having a heteroaromatic ring which is useful as a starting material of the above-mentioned polymer or a curing agent. Also, there is provided a fluorine-containing polymer having a heteroaromatic ring such as imidazole in its side chain, a polymer salt thereof, and a polymer composition comprising such a polymer and a polymer salt and a nano filler.
摘要:
There is provided a preparation process in which a N—H group of a heteroaromatic ring compound having a N—H group in its ring is converted directly to a N—Rf group at a high reaction efficiency without using a catalyst. The preparation process is a process for preparing a compound comprising a heteroaromatic ring structure having a N—Rf group (—Rf is a fluorine-containing organic group) in its ring and is characterized in that the heteroaromatic ring compound having a N—H group in its ring is allowed to react with fluoroalkene in the absence of an alkali metal.