Abstract:
The present invention relates to a method for screening a compound that inhibits secretion of toxins into host-cell cytoplasm by virulent bacteria using a needle type III secretion system. The compound of the invention is selected by screening for a compound which interacts with a loop region of the cytoplasmic domain of the membrane protein FlhB from Salmonella typhimurium or a paralog thereof. Compositions including the compound of the invention, use of the compound, and methods of treating disorders caused by virulent bacteria are also provided.
Abstract:
The present invention relates to compounds of the Formula (I), or a pharmaceutically acceptable salt, pharmaceutical preparation, or pharmaceutical composition thereof, and their use for the treatment of pain, inflammatory disease, neuropathy, dermatological disorders, pulmonary conditions, and cough, as well as inhibiting the Transient Receptor Potential A1 ion channel (TRPA1).
Abstract:
The present invention relates to substituted xanthines of general formula wherein R1 to R3 are as defined herein, the tautomers, the stereoisomers, the mixtures, the prodrugs thereof and the salts thereof which have valuable pharmacological properties, particularly an inhibiting effect on the activity of the enzyme dipeptidylpeptidase-IV (DPP-IV).
Abstract:
The present application is related to deuterated compounds which are novel neurotrophin mimetics. The application also discloses the treatment of disorders involving degradation or dysfunction of cells expressing p75 in a mammal by administering an effective amount of such deuterated compounds.
Abstract:
The present invention relates to a method for producing a complex crystal composed of two or more different compounds, comprising crystallizing the two or more different compounds under a condition at which menthol is heat melted, and a method for screening a complex crystal. In accordance with the method for producing a complex crystal of the present invention, a complex crystal capable of being used as a drug material can be produced rapidly, simply and efficiently. In addition, in accordance with the method for screening a complex crystal of the present invention, a stable complex crystal can be searched, which is industrially useful.
Abstract:
Singly and multiply charged imidazolium cations (ICs) have been identified as a class of chemical compositions that possess potent antineoplastic, antibacterial and antimicrobial properties. The imidazolium cations disclosed demonstrate greater or equivalent potency towards cancerous cells as the current clinical standard, cisplatin. These imidazolium cations, however, achieve this efficacy without any of the known toxic side effects caused by heavy metal-based antineoplastic drugs such as cisplatin.
Abstract:
Novel CFTR corrector compounds that are effective in rescuing halide efflux, delF508-CFTR protein processing, and apical functional chloride ion transport in a cell are provided. Also provided are methods for treating protein folding disorders (e.g., cystic fibrosis). The methods include administering a CFTR corrector compound or pharmaceutically acceptable salt or prodrug thereof. Methods of rescuing halide efflux in a cell, correcting a processing defect of a delF508-CFTR protein in a cell, and correcting functional delF508-CFTR chloride channels in a cell are also provided.
Abstract:
The present invention relates to substituted xanthines of general formula wherein R1 to R3 are as defined herein, the tautomers, the stereoisomers, the mixtures, the prodrugs thereof and the salts thereof which have valuable pharmacological properties, particularly an inhibiting effect on the activity of the enzyme dipeptidylpeptidase-IV (DPP-IV).
Abstract:
The present invention discloses a xanthine derivative having the structure of the following general formula (I) or a pharmaceutically acceptable salt thereof; further discloses a preparation method for the xanthine derivative or a pharmaceutically acceptable salt thereof; and further discloses the use of the xanthine derivative or a pharmaceutically acceptable salt thereof. Through experiments of DPP-IV activity inhibition experiments in vitro, impact on glucose tolerance in normal mice and impact on blood glucose in spontaneous diabetic mice, it proves that the compounds and pharmaceutically acceptable salts thereof show good DPP-IV inhibition activity, can be applied to prepare medicines for treating dipeptidyl peptidase IV-related diseases, and more particularly, can be applied to the use of medicines for treating type II diabetes or diseases of abnormal glucose tolerance.