摘要:
A backlighting device for use with display panels has a plurality of light diffusing elements formed in dots or stripes on one of the two major faces of a light conducting plate that is made of a light-transmissive material. The device also has a linear light source provided in proximity to the end portion of at least one side of the light conducting plate. In the device, at least one sheet that is made of a light-transmissive material and which has a multiple of prisms or raised structures having straight ridgelines defined by the apices and minima of the raised structures at small intervals on the same side of the sheet. The sheet is arranged in such a manner that the ridgelines are substantially parallel to one another and is located on an exit face of the light conducting plate in such a way that the straight ridgelines intersect that sides of the major face of the light conducting plate or intersect imaginary lines or stripes that would be drawn when the light diffusing elements are formed on the light conducting plate.
摘要:
A back lighting device which comprises a light conducting plate made of a light-transmissive material, a linear light source provided in proximity to the end portion of at least one side of the light conducting plate, a reflecting plate or film that covers the linear light source and which consists, in order from the light source side, of a specular reflecting plate or film, an air layer and a light diffusing/reflecting plate or film in superposition. One surface of the light conducting plate is provided with a light diffusing capability and covered with a specular or light diffusing/reflecting plate. Thereby, it is possible to provide a back lighting device that has a high efficiency of power to luminance conversion and which hence is capable of achieving high luminance.
摘要:
Method for producing an electromagnetic wave reflective film by a first selective reflection layer forming process of using a transparent substrate; applying a first selective reflection layer forming coating solution on the transparent substrate to form a first selective reflection layer forming layer; irradiating the first selective reflection layer forming layer with ultraviolet rays at a dose in the range of 25 mJ/cm2 to 800 mJ/cm2; and thereby forming a first selective reflection layer; and a second selective reflection layer forming process of: using a second selective reflection layer forming coating solution; applying the second selective reflection layer forming coating solution on the first selective reflection layer so as to be in direct contact therewith to form a second selective reflection layer forming layer; irradiating the second selective reflection layer forming layer with ultraviolet rays; and thereby forming a second selective reflection layer.
摘要翻译:通过使用透明基板的第一选择反射层形成工艺制造电磁波反射膜的方法; 在所述透明基板上施加第一选择反射层形成涂层溶液以形成第一选择反射层形成层; 以25mJ / cm 2〜800mJ / cm 2的剂量对紫外线照射第一选择反射层形成层; 从而形成第一选择反射层; 以及第二选择反射层形成工艺:使用第二选择反射层形成涂布溶液; 将第二选择反射层形成涂层溶液施加到第一选择反射层上以与其直接接触以形成第二选择反射层形成层; 用紫外线照射第二选择反射层形成层; 从而形成第二选择反射层。
摘要:
The present invention pertains to a pattern phase difference film, which is used to display 3D images using a passive system, and provides a method for producing a pattern phase difference film that can be manufactured with high precision, easily and in large quantities. In a mask provided for manufacturing an alignment film, slits, which are provided for exposure treatment, are made so as to gradually narrow toward the ends in the longitudinal direction.
摘要:
A pattern phase difference film, which is used to display 3D images using a passive system, and provides a method for producing a pattern phase difference film that can be manufactured with high precision, easily and in large quantities. A mask, which has slits that are made narrow compared to the width of a region that is to undergo exposure treatment and are provided for exposure treatment, is manufactured.
摘要:
Method for producing an electromagnetic wave reflective film by a first selective reflection layer forming process of using a transparent substrate; applying a first selective reflection layer forming coating solution on the transparent substrate to form a first selective reflection layer forming layer; irradiating the first selective reflection layer forming layer with ultraviolet rays at a dose in the range of 25 mJ/cm2 to 800 mJ/cm2; and thereby forming a first selective reflection layer; and a second selective reflection layer forming process of: using a second selective reflection layer forming coating solution; applying the second selective reflection layer forming coating solution on the first selective reflection layer so as to be in direct contact therewith to form a second selective reflection layer forming layer; irradiating the second selective reflection layer forming layer with ultraviolet rays; and thereby forming a second selective reflection layer.
摘要翻译:通过使用透明基板的第一选择反射层形成工艺制造电磁波反射膜的方法; 在所述透明基板上施加第一选择反射层形成涂层溶液以形成第一选择反射层形成层; 以25mJ / cm 2〜800mJ / cm 2的剂量对紫外线照射第一选择反射层形成层; 从而形成第一选择反射层; 以及第二选择反射层形成工艺:使用第二选择反射层形成涂布溶液; 将第二选择反射层形成涂层溶液施加到第一选择反射层上以与其直接接触以形成第二选择反射层形成层; 用紫外线照射第二选择反射层形成层; 从而形成第二选择反射层。
摘要:
In a liquid-crystal display (10), unpolarized light from a light source (12) passes through a linear polarization separation layer (14) and strikes a liquid-crystal cell (16). The liquid-crystal cell (16), in response to an applied electrical field, changes the direction of a director, so as to change the direction of the electrical field oscillation vector of the incident linearly polarized light by substantially 0 to 90°, this light then striking a dichroic linear polarization layer (18) on the surface, whereby only a component coincident with the polarization transmission axis thereof is allowed to exit to the outside. The dichroic linear polarization layer (18) transmits 50% of this incident light, and absorbs the remaining 50%.
摘要:
In a liquid-crystal display (10), unpolarized light from a light source (12) passes through a linear polarization separation layer (14) and strikes a liquid-crystal cell (16). The liquid-crystal cell (16), in response to an applied electrical field, changes the direction of a director, so as to change the direction of the electrical field oscillation vector of the incident linearly polarized light by substantially 0 to 90°, this light then striking a dichroic linear polarization layer (18) on the surface, whereby only a component coincident with the polarization transmission axis thereof is allowed to exit to the outside. The dichroic linear polarization layer (18) transmits 50% of this incident light, and absorbs the remaining 50%.
摘要:
Provided herein is a retardation optical element 10 that produces no bright and dark fringes on a displayed image even when placed between a liquid crystal cell 104 and a polarizer 102B and thus can effectively prevent lowering of display quality. The retardation optical element 10 includes a retardation layer 12 having a cholesteric-regular molecular structure with liquid crystalline molecules in planar orientation. The helical pitch in the molecular structure of the retardation layer 12 is so adjusted that the retardation layer 12 can, owing to its molecular structure, selectively reflect light whose wavelength falls in a range different from the wave range of light incident on the retardation layer 12 (the selective reflection wave range of the retardation layer is either shorter or longer than the wave range of the incident light). Further, the retardation layer 12 has two opposite main surfaces (larger surfaces) 12A and 12B that are perpendicular to each other in the direction of thickness, where the directions of the directors Da of the liquid crystalline molecules on the entire area of the one surface 12A are substantially the same, and those of the directors Db of the liquid crystalline molecules on the entire area of the other surface 12B are also substantially the same.
摘要:
A polarization light splitting film having a light receiving side and a light transmitting side. The polarization light splitting film includes an optical rotation selection layer at the light receiving side for reflecting one of right and left circularly polarized components of a light beam that is incident on the light receiving side and for transmitting the other one of the right and left circular polarization components of the light beam, and a quarter-wave layer laminated over the optical rotation selection layer at the light transmitting side.