Abstract:
A CVD-coated article has a substrate with a substrate surface and a CVD coating scheme on the substrate surface. The coating scheme includes a coating layer of Ti1-xMex nitride wherein Me is selected from the group of zirconium or hafnium or a mixture of zirconium and hafnium, and x equals between about 0.1 and about 0.9. The coating layer of Ti1-xMex nitride has a microhardness equal to between about 2300 HV0.05 and about 2600 HV0.05, a face centered cubic crystal structure, and a lattice constant equal to between about 0.427 nanometers and about 0.453 nanometers.
Abstract:
A coated cutting insert and a method for making the same. The coated cutting insert has a substrate with a substrate surface. There is a backing coating scheme on the substrate surface, and a TiAl2O3 coating layer wherein the TiAl2O3 coating layer is deposited using chemical vapor deposition from a gaseous composition including AiCl3, H2, TiCl4, CO2 and HCl.
Abstract translation:涂层切削刀片及其制造方法。 涂覆的切削刀片具有带有基底表面的基底。 在衬底表面上有背衬涂层方案,以及TiAl 2 O 3涂层,其中使用化学气相沉积从包括AlCl 3,H 2,TiCl 4,CO 2和HCl的气体组合物沉积TiAl 2 O 3涂层。
Abstract:
In one aspect, methods of making cladded articles are described herein. A method of making a cladded article, in some embodiments, comprises disposing over a surface of a metallic substrate a sheet comprising organic binder and powder metal or powder alloy having a solidus temperature at least 100° C. less than the metallic substrate and heating the powder metal or powder alloy to provide a sintered metal or sintered alloy cladding metallurgically bonded to the metallic substrate.
Abstract:
In one aspect, cutting tools are described having coatings adhered thereto which, in some embodiments, can demonstrate desirable wear resistance and increased cutting lifetimes. A coated cutting tool described herein comprises a substrate and a coating adhered to the substrate, the coating having a multilayer structure including a plurality of structural units each comprising a bonding layer and an adjacent alumina layer, the alumina layer having a thickness of less than 0.5 μm and the bonding layer having a thickness less than 1 μm, the bonding layer comprising TiCN and TiAlOC.
Abstract:
In one aspect, articles are described comprising refractory coatings employing nanocomposite architectures. Articles having such refractory coatings, in some embodiments, are suitable for high wear and/or abrasion applications such as metal cutting operations. A coated article described herein comprises a substrate and a coating deposited by CVD adhered to the substrate, the coating including a refractory layer having a matrix phase comprising alumina and a nanoparticle phase contained within the matrix phase, the nanoparticles phase comprising crystalline nanoparticles formed of at least one of a carbide, nitride or carbonitride of a Group IVB metal.
Abstract:
In one aspect, articles are described herein comprising refractory coatings employing an inter-anchored multilayer architecture. Articles having refractory coatings described herein, in some embodiments, are suitable for high wear and/or abrasion applications such as metal cutting operations. A coated article described herein comprises a substrate and a coating deposited by CVD adhered to the substrate, the coating including a refractory layer comprising a plurality of sublayer groups, a sublayer group comprising a Group IVB metal nitride sublayer and an adjacent layer alumina sublayer, the Group IVB metal nitride sublayer comprising a plurality of nodules interfacing with the alumina sublayer.
Abstract:
In one aspect, coated cutting tools are described herein. In some embodiments, a coated cutting tool comprises a substrate and a refractory layer deposited by PVD adhered to the substrate, the refractory layer comprising M1−xAlxN wherein x≧0.4 and M is titanium, chromium or zirconium, the refractory layer having a thickness greater than 5 μm, hardness of at least 25 GPa and residual compressive stress less than 2.5 GPa.
Abstract:
In one aspect, cutting tools are described having coatings adhered thereto which, in some embodiments, demonstrate desirable wear resistance and increased cutting lifetimes. A coated cutting tool described herein comprises a substrate and a coating adhered to the substrate, the coating including a refractory layer comprising plurality of sublayer groups, a sublayer group comprising an aluminum oxynitride (AlON) sublayer or a composite AlON sublayer and an alumina (Al2O3) sublayer or composite alumina sublayer.
Abstract translation:在一个方面,描述了具有粘附到其上的涂层的切削工具,在一些实施例中,其显示出期望的耐磨性和增加的切割寿命。 本文所述的涂覆的切削工具包括基底和附着到基底的涂层,该涂层包括包含多个子层组的耐火层,包含氮氧化铝(AlON)子层或复合AlON子层和氧化铝(Al 2 O 3)的子层组 )子层或复合氧化铝子层。
Abstract:
Refractory coatings for cutting tool applications and methods of making the same are described herein which, in some embodiments, permit incorporation of increased levels of aluminum into nitride coatings while reducing or maintaining levels of hexagonal phase in such coatings. Coatings and methods described herein, for example, employ cubic phase forming compositions for limiting hexagonal phase in nitride coatings of high aluminum content.
Abstract:
In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.