Abstract:
An electronic device that is provided in a vehicle, including an interface unit configured to electrically connect to a first camera and a second camera; and a processor configured to receive, via the interface unit, a forward view image including an object from the first camera; receive, via the interface unit, information about the object from the second camera; convert the information about the object from a coordinate system of the second camera into a coordinate system of the first camera; generate an augmented reality (AR) graphic object corresponding to the object using the converted information; and display the AR graphic object overlaid on the forward view image.
Abstract:
Disclosed is a method for controlling connection between a first device and a second device using Bluetooth by a control device including obtaining a first device information related to the first device from the first device, obtaining a second device information related to the second device from the second device, transmitting a connection request message for requesting connection with the second device to the first device based on the first device information and the second device information, and receiving a first response message including a result of connection with the second device in response to the connection request message.
Abstract:
The present specification relates to a method for establishing, by a first device, a device-to-device connection in a wireless communication system, the method comprising the steps of: transmitting, to at least one second device, a first communication signal including connection information for a second communication connection; receiving a response to an infrared signal from the at least one second device; and establishing a second communication connection with the second device on the basis of the received response.
Abstract:
A method by which a decoding apparatus performs image decoding, according to the present document, comprises the steps of: obtaining motion prediction information about a current block from a bitstream; generating an affine MVP candidate list for the current block; deriving CPMVPs for CPs of the current block on the basis of the affine MVP candidate list; deriving CPMVDs for the CPs of the current block on the basis of the motion prediction information; deriving CPMVs for the CPs of the current block on the basis of the CPMVPs and the CPMVDs; and deriving prediction samples for the current block on the basis of the CPMVs.
Abstract:
An image decoding method according to the present document includes obtaining motion prediction information for a current block from a bitstream, generating an affine MVP candidate list for the current block, deriving CPMVPs for CPs of the current block based on the affine MVP candidate list, deriving CPMVDs for the CPs of the current block based on the motion prediction information, deriving CPMVs for the CPs of the current block based on the CPMVPs and the CPMVDs, and deriving prediction samples for the current block based on the CPMVs.
Abstract:
An electric range is provided in which a lower surface of a base plate, on an upper end of which a working coil is placed, may be supported by at least one elastic supporter disposed at an upper end of at least one air guide along a widthwise direction of the base plate, thereby preventing bending of the base plate and maintaining a constant gap between an object to be heated and the working coil.
Abstract:
An image decoding method performed by a decoding apparatus according to the present document includes constituting a candidate list for deriving motion information of a sub-block unit for a current block, wherein the merge candidate list includes constructed candidates; deriving control point motion vectors (CPMVs) for control points (CPs) of the current block based on the merge candidate list; deriving prediction samples for the current block based on the CPMVs; and generating a reconstructed picture for the current block based on the derived prediction samples, wherein the constructed candidates are derived based on combination of at least two of a first neighboring block in a first group, a second neighboring block in a second group, a third neighboring block in a third group and a fourth neighboring block, and the first neighboring block, the second neighboring block and the third neighboring block and the fourth neighboring block constituting the combination have the same reference picture index.
Abstract:
The present invention relates to a vehicle user interface device including a display configured to display a first Augmented Reality (AR) graphic object at a point in a display area corresponding to a first point, and at least one processor configured to obtain distance data between a vehicle and the first point and change the first AR graphic object based on the distance data.
Abstract:
According to the present disclosure, an image decoding method performed by a decoding apparatus comprises the steps of: acquiring motion prediction information on a current block from a bitstream; generating an affine MVP candidate list including affine motion vector predictor candidates for the current block; deriving CPMVPs for CPs of the current block on the basis of one affine MVP candidate among the affine MVP candidates included in the affine MVP candidate list; deriving CPMVDs for the CPs of the current block on the basis of the motion prediction information; deriving CPMVs for the CPs of the current block on the basis of the CPMVPs and the CPMVDs; and deriving prediction samples for the current block on the basis of the CPMVs.
Abstract:
A picture decoding method implemented by a decoding device, according to the present invention, comprises the steps of: acquiring motion prediction information from a bitstream; generating an affine MVP candidate list comprising affine MVP candidates for the current block; deriving CPMVPs for the respective CPs of the current block on the basis of one affine MVP candidate among the affine MVP candidates included in the affine MVP candidate list; deriving CPMVDs for the CPs of the current block on the basis of information on the CPMVDs for the respective CPs included in the acquired motion prediction information; and deriving CPMVs for the CPs of the current block on the basis of the CPMVPs and the CPMVDs.