Abstract:
Provided is a wireless charging board including: a coil pattern; a soft magnetic layer having one side on which the coil pattern is disposed; and a heat dissipation layer disposed on the other side of the soft magnetic layer and including a first uneven pattern portion.
Abstract:
A lens assembly according to an embodiment of the present invention comprises: a housing; a lens received in the housing; a retainer which is coupled to one end of the housing and supports the lens; and a hydrophilic coating layer formed on one surface of the lens and on the retainer.
Abstract:
A lens assembly according to an embodiment of the present invention comprises: a housing; a lens received in the housing; a retainer which is coupled to one end of the housing and supports the lens; and a hydrophilic coating layer formed on one surface of the lens and on the retainer.
Abstract:
A wireless power receiving apparatus which wirelessly charges power according to one embodiment of the present invention includes a substrate, a soft magnetic layer which is laminated on the substrate and is formed with a plurality of patterns including at least 3 lines radiated from predetermined points, and a coil which is laminated on the soft magnetic layer and receives electromagnetic energy radiated from a wireless power transmitting apparatus.
Abstract:
Provided are a wireless charging and communication board, and a wireless charging and communication device, the wireless charging and communication board including: a soft magnetic layer; a polymeric material layer arranged on one surface and the other surface of the soft magnetic layer and extending longer than an exposed portion of the soft magnetic layer; and a coil pattern arranged on the polymeric material layer.
Abstract:
A soft magnetic layer for a receiving antenna of a wireless power receiving apparatus includes a first soft magnetic member containing a Mn—Zn ferrite material, and a second soft magnetic member containing a Ni—Zn ferrite material. Accordingly, electromagnetic energy collecting performance of the receiving antenna of the wireless power receiving apparatus is improved, and thereby power transmission efficiency is maximized.
Abstract:
A structure capable of efficiently shielding electromagnetic waves from an electronic component is provided. The structure for shielding electromagnetic waves may block electromagnetic interference (EMI) leakage and may efficiently shield various electronic devices from electromagnetic waves by forming a layer for shielding electromagnetic waves therein.
Abstract:
The present invention relates to a soft magnetic alloy and, more specifically, to a soft magnetic alloy used in electric transformers, pulse generators, compressions, electric chokes, energy-accumulating inductors, magnetic sensors, or the like, and a wireless power transmitting apparatus and wireless power receiving apparatus including the soft magnetic alloy.
Abstract:
Disclosed are a soft magnetic alloy and a wireless charging apparatus including the soft magnetic alloy. The soft magnetic alloy has a chemical formula expressed as Fe100-x-yCuxBy (wherein x ranges from 0.1 at % to 1.7 at % and y ranges from 2.3 at % to 9.6 at %). Without adding any expensive alloying element, only iron (Fe), copper (Cu), and boron (B) are used to obtain a nanocrystalline soft magnetic alloy that has a low coercive force and a high saturation magnetic flux density. The nanocrystalline soft magnetic alloy is applied to a wireless power transmitter and a wireless power receiver. Thereby, it is possible to make a shield member thin and increase a power transmission capacity. The soft magnetic alloy is easily processed into a flake form. The soft magnetic alloy processed in this way is applied to the shield member. Thereby, it is possible to increase permeability in a surface direction.
Abstract:
An inductor according to one embodiment of the present invention comprises: a core part; a coil part having one or more coils which are wound around the midfoot of the core part and which have two ends; and a base which is arranged beneath the coil part and which supports at least a part of the outer circumferential surface of each of the one or more coils, wherein the base can comprise: a frame having a hollow hole, which is formed at the center thereof so as to include a longer shaft and a shorter shaft; and a support part having a plurality of support members protruding toward the outer circumferential surface, so as to encompass at least a part of the outer circumferential surface.