Abstract:
The present invention proposes a switching controller of a flyback power converter. The switching controller includes a switching circuit, a sample-and-hold circuit, a voltage detection circuit, an oscillation circuit, and a comparator. The voltage detection circuit generates a holding signal when a level of an input voltage of the flyback power converter is lower than a low-threshold. The oscillation circuit limits the maximum frequency of switching signal. The maximum frequency is increased in response to a decrement of a modulation signal. The modulation signal correlated with a level of the input voltage is used to generate a control signal when the level of the input voltage is lower than an ultra-low-threshold. The control signal is enabled to operate the flyback power converter in continuous current mode operation. Therefore, an input capacitor can be eliminated and manufacturing cost is saved.
Abstract:
A method for controlling a power converter is provided. The method includes the following steps. A switching signal coupled to switch a transformer for regulating the output of the power converter is generated in accordance with a feedback signal and a ramp signal. The ramp signal is generated in accordance with a switching current signal and a slope compensation signal. The slope compensation signal is generated in response to an input voltage signal. The input voltage signal is generated in response to the level of the input voltage of the power converter. The feedback signal is generated in accordance with the output of the power converter, and the switching current signal is correlated with a switching current of the transformer.
Abstract:
A two-pin transmit/receive switch design includes a switching component configured to selectively switch in elements for a transmit signal path and elements for a receive signal path. A capacitor in the transmit signal path may be switched out when receiving signals on the receive signal path. Being able to selectively switch out the capacitor allows the capacitor value to be selected for optimal operation during transmit mode. For example, insertion loss may be minimized. In addition, elements in the receive signal path may be optimized (e.g., impedance matching) without being affected by or affecting the optimization that was performed for the transmit signal path.
Abstract:
Systems and methods for power amplification using multiple digital amplifiers are provided. A power amplifier includes a first digital amplifier configured to process a digital input signal to generate a first analog output signal. The first analog output signal is configured to have a magnitude corresponding to amplitude information of the digital input signal. The power amplifier further includes a second digital amplifier configured to process an adjusted digital input signal to generate a second analog output signal. The second analog output signal is configured to have a magnitude corresponding to amplitude information of the adjusted digital input signal. An adjustment module configured to adjust amplitude information and phase information of the digital input signal generates the adjusted digital input signal. The digital input signal is adjusted to control a relationship between the first analog output signal and the second analog output signal.
Abstract:
The present invention is directed to a method for measuring sandability of a coating or an article. This invention is particularly directed to a method for measuring sandability of a coating or an article quantitatively by measuring weight loss of said coating or article after being sanded. This invention is also directed to a system for measuring sandability of a coating or an article using said method.
Abstract:
A control circuit of a LED driver according to the present invention comprises an output circuit, an input circuit and an input-voltage detection circuit. The output circuit generates a switching signal to produce an output current for driving at least one LED in response to a feedback signal. The switching signal is coupled to switch a transformer. The input circuit samples an input signal for generating the feedback signal. The input signal is correlated to the output current of the LED driver. The input-voltage detection circuit generates an input-voltage signal in response to an input voltage of the LED driver. The input circuit will not sample the input signal when the input-voltage signal is lower than a threshold. The control circuit can eliminate the need of the input capacitor for improving the reliability of the LED driver.
Abstract:
A method for controlling a power converter is provided. The method includes the following steps. A switching signal coupled to switch a transformer for regulating the output of the power converter is generated in accordance with a feedback signal and a ramp signal. The ramp signal is generated in accordance with a switching current signal and a slope compensation signal. The slope compensation signal is generated in response to an input voltage signal. The input voltage signal is generated in response to the level of the input voltage of the power converter. The feedback signal is generated in accordance with the output of the power converter, and the switching current signal is correlated with a switching current of the transformer.
Abstract:
A roll shaft structure is provided for fixing a first roll or a second roll. The roll shaft structure includes a shaft body, a first ring and a second ring. The diameter of the shaft body is equal to the inner diameter of the first roll. The diameter of each of the first ring and the second ring is equal to the inner diameter of the second roll. When the shaft body penetrates through the first roll, the shaft body is contacted with the inner wall of the first roll, so that the first roll is fixed on the roll shaft structure. Whereas, when the shaft body penetrates through the second roll, the first ring and the second ring that are fixed on the shaft body are contacted with the inner wall of the second roll, so that the second roll is fixed on the roll shaft structure.
Abstract:
The present invention relates to compounds capable of acting as androgen receptor antagonists, pharmaceutical formulations containing the same, and methods of use thereof. Such uses include, but are not limited to, use as antitumor agents, particularly for the treatment of cancers such as colon, skin and prostate cancer and to induce androgen receptor antagonist activity in a subject afflicted with an androgen-related affliction. Examples of androgen-related afflictions include, but are not limited to, baldness, hirsutism, behavioral disorders, acne, and uninhibited spermatogenesis wherein inhibition of spermatogenesis is so desired.
Abstract:
A series of p105-based NF-κB super repressors, designated p-105(sr), have been designed. The p105(sr), no longer generates p50 and undergoes signal-induced degradation, effectively inhibiting all NF-κB activities. Additionally, p105(sr) significantly enhances tumor necrosis factor alpha (TNF-α)-mediated killing of MT1/2 skin papilloma cells when p50 homodimer activity is elevated. p105(sr) is an effective NF-κB super repressor with a broader range than other currently available IkBα super repressors. The novel repressor can be used in cells where a noncanical NF-κB activity is dominant or multiple NF-κB activities are activated.