Abstract:
A video filter includes a motion detector to detect motion between frames of a video for each pixel, a shape adaptive spatial filter and a weighted temporal filter. The spatial filter and the temporal filter are smoothly mixed together based on the amount of motion detected by the motion detector for each pixel. When the motion detected by the motion detector is low, the video filter tends to do more temporal filtering. When the motion detected by the motion detector is high, the video filter tends to do more spatial filtering.
Abstract:
Local motion estimation is described herein. Each picture of a video is partitioned into blocks for the local motion estimation. An extended-block FFT is calculated for each block, where the extended-block denotes that a certain area around the block is also included for applying FFT. Extending the block for FFT helps to account for the motion of objects that are moving into or out of the block. Phase correlation is applied to attain a set of Motion Vector (MV) candidates for the blocks, and a cost function is evaluated for each MV. If no MV candidate produces a cost function below a pre-defined threshold, a hierarchical variable block matching search is applied and the process is repeated with blocks for finer resolution. Also, predictive MV candidates are used during the block matching search along with temporal constraints tracking to select an MV that yields the minimum cost function.
Abstract:
The present invention discloses an image unsharpness test method for a camera device, wherein firstly, during the focusing stage of an electronic camera device, the image with the highest sharpness is selected to be a contrast image; next, the contrast image is compared with a captured image to obtain the sharpness difference between the contrast image and the captured image; if the difference is too great, the captured image is determined to be unsharp; vice versa, if the difference is very small, the captured image is determined to be sharp. Thereby, the image unsharpness test method for a camera device of the present invention not only can determine whether a captured is sharp enough but also can reduce the photographic errors and promote photographic efficiency.
Abstract:
A superior Color Transient Improvement technique is adaptive to the local image features, so that more natural color edge transition improvement can be accomplished. A gain control function is provided that depends on the local image feature so that different regions of the image can be treated differently. Further, a correction signal is controlled in such a way (by the local image feature) that neither undershoot nor overshoot occurs, eliminating the need for post-processing for undershoot/overshoot removal.
Abstract:
An improved noise reduction process by wavelet thresholding utilizes a discrete wavelet transform to decompose the image into different resolution levels. A thresholding function is then applied in different resolution levels with different threshold values to eliminate insignificant wavelet coefficients which mainly correspond to the noise in the original image. Finally, an inverse discrete wavelet transform is applied to generate the noise-reduced video image. The threshold values are based on the relationships between the noise standard deviations of different decomposition levels in the wavelet domain and the noise standard deviation of the original image.
Abstract:
A ringing area detector classifies the input image into two regions: a mosquito noise region (i.e. filtering region) and a non-mosquito noise region (i.e. non-filtering region), and uses this classification information to adaptively remove the mosquito noise in a mosquito noise reduction system. The mosquito noise reduction system includes a ringing area detector, a local noise power estimator, a smoothing filter, and a mixer. The ringing area detector includes an edge detector, a near edge detector, a texture detector, and a filtering region decision block. The ringing detection block detects the ringing area where the smoothing filter is to be applied. The local noise power estimator controls the filter strength of the smoothing filter. The smoothing filter smoothes the input image. The mixer mixes the smoothed image and the original image properly based on the region information from the ringing area detection block.
Abstract:
The instant application describes a display device including a display panel; a first component forming the front portion of the cabinet; a second component forming the rear portion of the cabinet; a metal plate comprising a first flat portion parallel to the display surface of the display panel and a second flat portion perpendicular to the first flat portion; an engaging portion provided on the first flat portion, the engaging portion being engaged with the first component; a female screw portion to which a screw penetrating the second component is inserted, and a receiving portion provided on the first component to which the engaging portion is engaged.
Abstract:
An imager includes an array of pixels arranged in rows and a control circuit for sequentially capturing first and second image frames from the array of pixels. The control circuit is configured to sequentially capture first and second pairs of adjacent rows of pixels during first and second exposure times, respectively, when capturing the first image frame. The control circuit is also configured to sequentially capture first and second pairs of adjacent rows of pixels during second and first exposure times, respectively, when capturing the second image frame. The first exposure times during the first and second frames are of similar duration; and the second exposure times during the first and second frames are of similar duration. The control circuit is configured to detect motion of an object upon combining the first and second image frames and, then, correct for the motion of the object.
Abstract:
This is generally directed to systems and methods for local tone mapping of high dynamic range (“HDR”) images. For example, a HDR image can have its larger dynamic range mapped into the smaller dynamic range of a display device. In some embodiments, to perform the local tone mapping, a RGB to Y converter can be used to convert the input image signal to a luminance signal in the YCgCo color space, a shape adaptive filter can be used to separate the luminance signal into its illumination and reflectance components, contrast compression can be applied to the illumination component, image sharpening can be applied to the reflectance component, and the processed illumination and reflection components can be used to calculate a processed RGB signal. The dynamic range of the processed RGB signal can then be mapped into the dynamic range of the display device.
Abstract:
Local motion estimation is described herein. Each picture of a video is partitioned into blocks for the local motion estimation. An extended-block FFT is calculated for each block, where the extended-block denotes that a certain area around the block is also included for applying FFT. Extending the block for FFT helps to account for the motion of objects that are moving into or out of the block. Phase correlation is applied to attain a set of Motion Vector (MV) candidates for the blocks, and a cost function is evaluated for each MV. If no MV candidate produces a cost function below a pre-defined threshold, a hierarchical variable block matching search is applied and the process is repeated with blocks for finer resolution. Also, predictive MV candidates are used during the block matching search along with temporal constraints tracking to select an MV that yields the minimum cost function.