Method And System For Eliminating Polarization Dependence For 45 Degree Incidence MUX/DEMUX Designs

    公开(公告)号:US20200092025A1

    公开(公告)日:2020-03-19

    申请号:US16694318

    申请日:2019-11-25

    Applicant: Luxtera, Inc.

    Abstract: Methods and systems for eliminating polarization dependence for 45 degree incidence MUX/DEMUX designs may include an optical transceiver, where the optical transceiver comprises an input optical fiber, a beam splitter, and a plurality of thin film filters arranged above corresponding grating couplers in a photonics die. The transceiver may receive an input optical signal comprising different wavelength signals via the input optical fiber, split the input optical signal into signals of first and polarizations using the beam splitter by separating the signals of the second polarization laterally from the signals of the first polarization, communicate the signals of the first polarization and the second polarization to the plurality of thin film filters, and reflect signals of each of the plurality of different wavelength signals to corresponding grating couplers in the photonics die using the thin film filters.

    Method and system for eliminating polarization dependence for 45 degree incidence MUX/DEMUX designs

    公开(公告)号:US10469195B2

    公开(公告)日:2019-11-05

    申请号:US16158001

    申请日:2018-10-11

    Applicant: Luxtera, Inc.

    Abstract: Methods and systems for eliminating polarization dependence for 45 degree incidence MUX/DEMUX designs may include an optical transceiver, where the optical transceiver comprises an input optical fiber, a beam splitter, and a plurality of thin film filters coupled to a photonics die. The thin film filters are arranged above corresponding grating couplers in the photonics die. The transceiver may receive an input optical signal comprising different wavelength signals via the input optical fiber, split the input optical signal into signals of first and polarizations using the beam splitter by separating the signals of the second polarization laterally from the signals of the first polarization, communicate the signals of the first polarization and the second polarization to the plurality of thin film filters, and reflect signals of each of the plurality of different wavelength signals to corresponding grating couplers in the photonics die using the thin film filters.

    Method and system for a vertical junction high-speed phase modulator

    公开(公告)号:US10444593B2

    公开(公告)日:2019-10-15

    申请号:US15694236

    申请日:2017-09-01

    Applicant: Luxtera, Inc.

    Abstract: Methods and systems for a vertical junction high-speed phase modulator are disclosed and may include a semiconductor device having a semiconductor waveguide including a slab section, a rib section extending above the slab section, and raised ridges extending above the slab section on both sides of the rib section. The semiconductor device has a vertical pn junction with p-doped material and n-doped material arranged vertically with respect to each other in the rib and slab sections. The rib section may be either fully n-doped or p-doped in each cross-section along the semiconductor waveguide. Electrical connection to the p-doped and n-doped material may be enabled by forming contacts on the raised ridges, and electrical connection may be provided to the rib section from one of the contacts via periodically arranged sections of the semiconductor waveguide, where a cross-section of both the rib section and the slab section in the periodically arranged sections may be fully n-doped or fully p-doped.

    Method and system for a silicon-based optical phase modulator with high modal overlap

    公开(公告)号:US10361790B2

    公开(公告)日:2019-07-23

    申请号:US16036447

    申请日:2018-07-16

    Applicant: Luxtera, Inc.

    Abstract: Methods and systems for a silicon-based optical phase modulator with high modal overlap are disclosed and may include, in an optical modulator having a rib waveguide in which a cross-shaped depletion region separates four alternately doped sections: receiving an optical signal at one end of the optical modulator, modulating the received optical signal by applying a modulating voltage, and communicating a modulated optical signal out of an opposite end of the modulator. The modulator may be in a silicon photonically-enabled integrated circuit which may be in a complementary-metal oxide semiconductor (CMOS) die. An optical mode may be centered on the cross-shaped depletion region. The four alternately doped sections may include: a shallow depth p-region, a shallow depth n-region, a deep p-region, and a deep n-region. The shallow depth p-region may be electrically coupled to the deep p-region periodically along the length of the modulator.

    Method And System For A Vertical Junction High-Speed Phase Modulator

    公开(公告)号:US20190113823A1

    公开(公告)日:2019-04-18

    申请号:US16206755

    申请日:2018-11-30

    Applicant: Luxtera, Inc.

    Abstract: Methods and systems for a vertical junction high-speed phase modulator are disclosed and may include a semiconductor waveguide including a slab section, a rib section extending above the slab section, raised ridges extending above the slab section on both sides of the rib section, and a vertical pn junction with p-doped material and n-doped material arranged vertically with respect to each other in the rib and slab sections. The rib section may be either fully n-doped or fully p-doped in each cross-section along the semiconductor waveguide. Electrical contact may be made to the doped material via contacts on the raised ridges, and electrical contact may be made to the rib section via periodically arranged sections of the semiconductor waveguide. A cross-section of both the rib section and the slab section in the periodically arranged sections may be mostly n-doped with an undoped portion or mostly p-doped with an undoped portion.

    Method and system for a low parasitic silicon high-speed phase modulator with intermittent P-and N-doped raised fingers

    公开(公告)号:US10209540B2

    公开(公告)日:2019-02-19

    申请号:US16036409

    申请日:2018-07-16

    Applicant: Luxtera, Inc.

    Abstract: Methods and systems for a low-parasitic silicon high-speed phase modulator are disclosed and may include fabricating an optical phase modulator that comprises a PN junction waveguide formed in a silicon layer, wherein the silicon layer may be on an oxide layer and the oxide layer may be on a silicon substrate. The PN junction waveguide may have p-doped and n-doped regions on opposite sides along a length of the PN junction waveguide, and portions of the p-doped and n-doped regions may be removed. Contacts may be formed on remaining portions of the p-doped and n-doped regions. Portions of the p-doped and n-doped regions may be removed symmetrically about the PN junction waveguide. Portions of the p-doped and n-doped regions may be removed in a staggered fashion along the length of the PN junction waveguide. Etch transition features may be removed along the p-doped and n-doped regions.

Patent Agency Ranking