摘要:
A metal composite for use in electrochemical devices is disclosed. The metal composite comprises a stainless steel interior component and a deposited nitrided metal exterior layer, wherein the nitrided exterior layer has lower electric contact resistance and greater corrosion resistance than the stainless steel interior component. A bipolar plate made of such metal composite and methods of producing the metal composite and bipolar plate are also disclosed.
摘要:
A fuel cell stack includes a first fuel cell assembly and a last fuel cell assembly. The first fuel cell assembly includes a first end plate assembly, which has a first end plate cooling channel adapted to receive a coolant. The last fuel cell assembly includes a last end plate assembly that has a last end plate cooling channel. A first electrical potential exists between the first end plate and the last end plate. The fuel cell stack also includes a connecting cooling channel is in fluid communication with the first end plate cooling channel and the last end plate cooling channel. A coolant is contained within the connecting coolant channel, the first end plate cooling channel, and a last end plate cooling channel. The fuel cell stack further includes a coolant electrode positioned in the coolant channel, which contacts the coolant. A voltage source is in communication with the first end plate and the coolant electrode such that a second electrical potential between the coolant electrode and the first end plate is at a sufficient voltage to impede corrosion of the first end plate.
摘要:
One exemplary embodiment may include a method comprising: depositing a solution comprising an organometallic compound on a substrate, drying the solution to provide a film of the organometallic compound and at least partially oxidizing an organic component of the organometallic compound to provide nanoparticles including metal oxides on the substrate which would have multiuse industrial applications.
摘要:
One exemplary embodiment includes a fuel cell component having comprising a carbon chain, and a material grafted to the coating/surface, wherein the material includes ionic or polar groups. One embodiment includes composite plates which include carbon that can be activated and treated to make their surface hydrophilic.
摘要:
One exemplary embodiment includes a method of selectively electroplating an electrically conductive coating on selected portions of lands of a bipolar plate leaving portions of the lands uncoated by the electrically conductive coating. Thus, allowing for reducing cost of bipolar plates for PEM fuel cells considerably.
摘要:
One embodiment disclosed includes a product comprising a fuel cell bipolar plate comprising a substrate comprising a first face, a reactant gas flow field defined in the first face, and a layer over at least a portion of the first face, wherein the layer comprises a zeolite.
摘要:
A method of fabricating a corrosion-resistant and inexpensive bipolar plate for a fuel cell is disclosed. The method includes providing a bipolar plate substrate and coating a corrosion-resistant coating on the bipolar plate substrate using a kinetic spray process.
摘要:
One embodiment of the invention includes a product including a fuel cell component including a coating thereon, the coating comprising nanoparticles comprising titanium oxide or titanium containing compounds derived therefrom.
摘要:
A fuel cell component includes an electrode support material made with nanofiber materials of Titania and ionomer. A bipolar plate stainless steel substrate and a carbon-containing layer doped with a metal selected from the group consisting of platinum, iridium, ruthenium, gold, palladium, and combinations thereof.
摘要:
In at least one embodiment, the present invention provides an electrically conductive fluid distribution plate and a method of making, and system for using, the electrically conductive fluid distribution plate. In at least one embodiment, the plate comprises a plate body defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, and a polymeric porous conductive layer proximate the plate body, with the porous conductive layer having a porosity sufficient to result in a water contact angle of the surface of less than 40°.