摘要:
In one example, an apparatus for signaling information for video data includes a processor configured to receive video data for two or more views of a scene, form a representation comprising a subset of the two or more views, and send, to a client device, as a part of a manifest of the representation, information indicative of a maximum number of views in the representation that can be targeted for output. An apparatus for receiving information for video data may receive the manifest including the information indicating the maximum number of views and request at least a portion of the video data of the representation based at least in part on a maximum number of views that can be output by the apparatus and the information indicative of the maximum number of views in the representation that can be targeted for output.
摘要:
In general, this disclosure provides techniques for quantization of the coefficients of video blocks in a manner that can achieve a desirable balance of rate and distortion. The described techniques may analyze a plurality of quantization levels associated with each individual coefficient to select the quantization level for the individual coefficients that results in a lowest coding cost. Since CAVLC does not encode each coefficient independently, the techniques may compute the coding costs for each of the candidate quantization levels associated with the individual coefficients based on quantization levels selected for previously quantized coefficients and estimated (or predicted) quantization levels for subsequent coefficients of a coefficient vector. The quantization levels for each of the coefficients are selected based on computed coding costs to obtain a set of quantized coefficients that minimize a rate-distortion model.
摘要:
Techniques are described for encoding and decoding digital video data using macroblocks that are larger than the macroblocks prescribed by conventional video encoding and decoding standards. For example, the techniques include encoding and decoding a video stream using macroblocks comprising greater than 16×16 pixels, for example, 64×64 pixels. Each macroblock may be partitioned into two or more partitions, and two or more of the partitions may be encoded using different modes. In one example, an apparatus includes a video encoder configured to receive a video block having a size of more than 16×16 pixels, partition the block into partitions, encode one of the partitions using a first encoding mode, encode another of the partitions using a second encoding mode different from the first encoding mode, and generate block-type syntax information that indicates the size of the block and identifies the partitions and the encoding modes used to encode the partitions.
摘要:
Aspects of this disclosure relate to, in an example, a method that includes identifying a first block of video data in a first temporal location from a first view, wherein the first block is associated with a first disparity motion vector. The method also includes determining a motion vector predictor for a second motion vector associated with a second block of video data, wherein the motion vector predictor is based on the first disparity motion vector. When the second motion vector comprises a disparity motion vector, the method includes determining the motion vector predictor comprises scaling the first disparity motion vector to generate a scaled motion vector predictor, wherein scaling the first disparity motion vector comprises applying a scaling factor comprising a view distance of the second disparity motion vector divided by a view distance of the first motion vector to the first disparity motion vector.
摘要:
The example techniques described in this disclosure provide for an efficient manner to encode or decode a video block of a picture using a single reference picture list. The single reference picture list may include identifiers for reference picture or pictures used to encode or decode the video block. In some examples, a video encoder or decoder may encode or decode a video block that is predicted from two reference pictures using the single reference picture list, and encode or decode a video block that is predicted from one reference picture using the same, single reference picture list.
摘要:
A video block syntax element indicates whether all of the partitions of a video block are predicted based on a same reference list and no greater than quarter-pixel accuracy is used. If the video block syntax element is set, partition-level signaling of the reference lists is avoided. If the video block syntax element is not set, partition-level signaling of the reference lists occurs. If the video block syntax element is set, partition-level syntax elements may be used for each of the partitions of the video block, wherein the partition-level syntax elements each identify one of the reference lists and motion vector accuracy for a given one of the partitions.
摘要:
In one example, an apparatus includes a video encoder configured to partition a block of video data into a first partition and a second partition using a geometric motion partition line, determine a first motion vector for the first partition and a second motion vector for the second partition, encode the first motion vector based on a first motion predictor selected from motion vectors for blocks neighboring the first partition, encode the second motion vector based on a second motion predictor selected from motion vectors for blocks neighboring the second partition, wherein the blocks neighboring the second partition are determined independently of the blocks neighboring the first partition, and output the encoded first and second motion vectors. A video decoder may similarly decode the motion vectors based on determining the first and second motion predictors for the first and second partitions.
摘要:
In one aspect of this disclosure, rounding adjustments to bi-directional predictive data may be purposely eliminated to provide predictive data that lacks any rounding bias. In this case, rounded and unrounded predictive data may both be considered in a rate-distortion analysis to identify the best data for prediction of a given video block. In another aspect of this disclosure, techniques are described for selecting among default weighted prediction, implicit weighted prediction, and explicit weighted prediction. In this context, techniques are also described for adding offset to prediction data, e.g., using the format of explicit weighted prediction to allow for offsets to predictive data that is otherwise determined by implicit or default weighted prediction.
摘要:
In one aspect of this disclosure, techniques are described for selecting among default weighted prediction, implicit weighted prediction, and explicit weighted prediction. In this context, techniques are also described for adding offset to prediction data, e.g., using the format of explicit weighted prediction to allow for offsets to predictive data that is otherwise determined by implicit or default weighted prediction.
摘要:
Techniques are described for encoding and decoding digital video data using macroblocks that are larger than the macroblocks prescribed by conventional video encoding and decoding standards. For example, the techniques include encoding and decoding a video stream using macroblocks comprising greater than 16×16 pixels, for example, 64×64 pixels. In one example, an apparatus includes a video encoder configured to encode a video block having a size of more than 16×16 pixels, generate block-type syntax information that indicates the size of the block, and generate a coded block pattern value for the encoded block, wherein the coded block pattern value indicates whether the encoded block includes at least one non-zero coefficient. The encoder may set the coded block pattern value to zero when the encoded block does not include at least one non-zero coefficient or set the coded block pattern value to one when the encoded block includes a non-zero coefficient.