摘要:
A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate. An adhesion barrier layer is formed to line the recess. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. The recess is filled with a fill layer.
摘要:
Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to form an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A suicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
摘要:
Transistor devices are formed with nickel silicide layers formulated to prevent degradation upon removal of overlying stress liners. Embodiments include transistors with nickel silicide layers having a platinum composition gradient increasing in platinum content toward the upper surfaces thereof, i.e., increasing in platinum in a direction away from the gate electrode and source/drain regions. Embodiments include forming a first layer of nickel having a first amount of platinum and forming, on the first layer of nickel, a second layer of nickel having a second amount of platinum, the second weight percent of platinum being greater than the first weight percent. The layers of nickel are then annealed to form a nickel silicide layer having the platinum composition gradient increasing in platinum toward the upper surface. The platinum concentration gradient protects the nickel silicide layer during subsequent processing, as during etching to remove overlying stress liners, thereby avoiding a decrease in device performance.
摘要:
A semiconductor device is disclosed having a conductive gate structure overlying a semiconductor layer having a major surface. An isolation material is recessed within a trench region below the major surface of the semiconductor layer. An epitaxial layer is formed overlying a portion of the major surface and on an active region forming a sidewall of the trench.
摘要:
A via is formed in contact with a conductive line, whereby the via is offset from the conductive line so that the via extends beyond the conductive line. In accordance with a specific embodiment, a portion of the via contacts a sidewall of the conductive line.
摘要:
A method of forming an integrated circuit with a semiconductor substrate is provided. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. Source/drain junctions are formed in the semiconductor substrate. A thin insulating layer is formed over the source/drain junctions. A silicide is formed on the thin insulating layer and on the gate. An interlayer dielectric is deposited above the semiconductor substrate. Contacts are then formed in the interlayer dielectric to the silicide.
摘要:
An n-type strained silicon MOSFET utilizes a strained silicon channel region formed on a silicon germanium substrate. Silicon regions are provided in the silicon geranium layer at opposing sides of the strained silicon channel region, and shallow source and drain extensions are implanted in the silicon regions. By forming the shallow source and drain extensions in silicon regions rather than in silicon germanium, source and drain extension distortions caused by the enhanced diffusion rate of arsenic in silicon germanium are avoided.
摘要:
Bridging between nickel suicide layers on a gate electrode and source/drain regions along silicon nitride sidewall spacers is prevented by treating the exposed surfaces of the silicon nitride sidewall spacers with a nitrogen plasma to create a surface region having reduced free silicon. Embodiments include treating the silicon nitride sidewall spacers with a nitrogen plasma to reduce the refractive index of the surface region to less than about 1.95.
摘要:
A novel method of automatically controlling thickness of a metal film during film deposition in a deposition chamber. The method involves producing an X-ray beam directed to the metal film deposited on a wafer in a deposition chamber, and detecting X-ray fluorescence of the metal film. The thickness of the metal film determined based on the detected X-ray fluorescence is compared with a preset value to continue deposition if the determined thickness is less than the preset value. Deposition is stopped when the determined thickness reaches the preset value.
摘要:
Bridging between silicide layers on a gate electrode and source/drain regions along silicon nitride sidewall spacers is prevented by implanting the exposed surfaces of the silicon nitride sidewall spacers with nitrogen to create a surface region having an increased nitrogen concentration. Embodiments include implanting the silicon nitride sidewall spacers with nitrogen such that the nitrogen concentration of the exposed surface is increased by about 5% to about 15%, thereby substantially preventing the formation of metal silicide on the sidewall spacers.