摘要:
An etching method for semiconductor element is provided. The etching method includes the following procedure. First, a to-be-etched substrate is provided. Then, a silicon-rich silicon oxide (SRO) layer is formed on the to-be-etched substrate. Afterwards, an anti-reflective layer is formed on the SRO layer. Then, a patterned photo resist layer is formed on the anti-reflective layer. Afterwards, the anti-reflective layer, the SRO layer and the to-be-etched substrate is etched so as to form an opening.
摘要:
The present invention relates generally to semiconductors, and more specifically to semiconductor memory device structures and an improved fabrication process for making the same. The improved fabrication process allows the self-aligned contacts and local interconnects to the processed simultaneously. The process allows the minimal distance requirement between the self-aligned contacts and the local interconnects to be widened, which makes the patterning of self-aligned contacts and local interconnects easier. The widened minimal distance requirement also allows further memory cell shrinkage. The improved structures of self-aligned contacts and local interconnects also have excellent isolation characteristic.
摘要:
A fabrication method of an electronic device is provided. First, a substrate is provided. Then, a patterned amorphous carbon (α-C) layer is formed on the substrate and exposes part of the substrate. Next, a first α-C layer covering the patterned α-C layer and part of the substrate is formed. Then, part of the substrate and part of the first α-C layer covering part of the substrate are removed, so as to form a patterned substrate and a second α-C layer.
摘要:
A method of manufacturing a semiconductor device includes providing a first layer over a wafer substrate, providing a polysilicon layer over the first layer, implanting nitrogen ions into the polysilicon layer, forming a polycide layer over the polysilicon layer, and forming source and drain regions.
摘要:
Described is a method for improving the flatness of a layer deposited on a doped polycrystalline layer, which includes reducing the grain size of the polycrystalline layer to decrease the out-diffusion amount of the dopant from the polycrystalline layer, and/or reducing the amount of the out-diffusing dopant on the surface of the polycrystalline layer.
摘要:
The present invention relates generally to semiconductors, and more specifically to semiconductor memory device structures and an improved fabrication process for making the same. The improved fabrication process allows the self-aligned contacts and local interconnects to the processed simultaneously. The process allows the minimal distance requirement between the self-aligned contacts and the local interconnects to be widened, which makes the patterning of self-aligned contacts and local interconnects easier. The widened minimal distance requirement also allows further memory cell shrinkage. The improved structures of self-aligned contacts and local interconnects also have excellent isolation characteristic.
摘要:
A BEOL manufacturing process for forming a via on a semiconductor wafer comprises depositing a portion of a first metal adhesion layer within a patterned via hole, followed by a cooling step. The cooling step is then followed by formation of the remainder of the first metal adhesion layer and formation of a second metal adhesion layer within the patterned via hole. This process of forming the remaining portion of the first metal adhesion layer can be referred to as a load, unload, load (LUL) process. By using a LUL process, thermal processing is minimized, which reduces Al extrusion at the via interfaces.
摘要:
A method of predicting product yield may include determining defect characteristics for a product based at least in part on inspection data associated with critical layers of the product, determining yield loss for each of the critical layers, and estimating product yield based on the determined yield loss of the critical layers. A corresponding apparatus is also provided.
摘要:
The present invention relates generally to semiconductors, and more specifically to semiconductor memory device structures and an improved fabrication process for making the same. The improved fabrication process allows the self-aligned contacts and local interconnects to the processed simultaneously. The process allows the minimal distance requirement between the self-aligned contacts and the local interconnects to be widened, which makes the patterning of self-aligned contacts and local interconnects easier. The widened minimal distance requirement also allows further memory cell shrinkage. The improved structures of self-aligned contacts and local interconnects also have excellent isolation characteristic.
摘要:
A semiconductor device with an unlanded via having an air gap dielectric layer and a silicon-rich oxide (SRO) inter-metal dielectric (IMD) layer, and a method of making the same are provided. The SRO layer acts as an etch-stop layer to prevent unlanded via penetration completely through the IMD layer. In addition, the SRO has a higher extinction coefficient (k) than conventional high-density plasma (HDP) oxide layers, thereby preventing plasma etch damage and excessive void formation in an unlanded via.