Abstract:
A sampling adsorber, a heat desorption chamber device, a sampling apparatus and an analyzer apparatus. The sampling adsorber includes an outer barrel, which includes an outer barrel first end and an outer barrel second end, and a core located in the outer barrel, the core having a core first end and a core second end, and the outer barrel first end and the core first end are located at a same side of the sampling adsorber. The core includes an adsorbent portion configured to adsorb a sample and a core body portion, the adsorbent portion connected to the core body portion. Sizes of the outer barrel and the core are formed such that a gap is provided between them to allow external gas to enter the gap through the adsorbent portion and to subsequently be discharged from a downstream portion of the gap.
Abstract:
The present disclosure provides a drawer-type carrying device for an accelerator and an cabin structure for the accelerator, the drawer-type carrying device for the accelerator includes a frame mechanism and a drawing mechanism. The frame mechanism is used for installing the accelerator; the drawing mechanism is connected with the frame mechanism and the frame mechanism is movable relative to the drawing mechanism. The cabin structure for the accelerator includes a cabin, a shielding mechanism and a drawer-type carrying device for the accelerator. The cabin has a working area and a maintenance area. The shielding mechanism is disposed in the working area and has a side opening door facing towards the maintenance area. The frame mechanism is capable of drawn from the shielding mechanism into the maintenance area when the side opening door is opened.
Abstract:
The present disclosure relates to the technical field of safety detection, and in particular to a sample collecting and introducing device and a detection system. The sample collecting and introducing device provided by the present disclosure includes a sampling device for collecting a sample, and a semipermeable membrane device for extracting the sample collected by the sampling device and conveying the extracted sample to detection equipment, wherein the sampling device is provided with an air guide cavity, the air guide cavity is configured to guide airflow carrying the sample to flow to the semipermeable membrane device, the semipermeable membrane device is provided with a semipermeable membrane which is arranged outside the sampling device. In the present disclosure, the size of the semipermeable membrane is no longer limited by the sampling device, and therefore the difficulty of increasing the area of the semipermeable membrane is reduced.
Abstract:
An inspection method and system for inspecting whether there is any liquor in goods is provided. The method includes: acquiring a radiation image of goods being inspected; processing on the radiation image to obtain an ROI; inspecting on the ROI using a liquor goods inspection model to determine if the ROI of the radiation image contains liquor goods. The above solution performs liquor inspection on scanned images of goods, especially containers, so as to intelligently assist the image inspectors.
Abstract:
The present disclosure provides a low-angle self-swinging type computed tomography (CT) apparatus, which is provided with an X-ray accelerator and a plurality of rows of detectors and is configured to include a slip ring, such that the slip ring with the accelerator and the detectors thereon is capable of performing a single-pendulum reciprocating movement while an objected to be inspected passes through the slip ring, a three dimension CT image of the object is displayed, thereby achieving accurate inspection for large-scale objects, such as van containers.
Abstract:
The present disclosure proposes a packaging structure for a metallic bonding based opto-electronic device and a manufacturing method thereof. According to the embodiments, the packaging structure for an opto-electronic device may comprise an opto-electronic chip and a packaging base. The opto-electronic chip comprises: a substrate having a first substrate surface and a second substrate surface opposite to each other; an opto-electronic device formed on the substrate; and electrodes for the opto-electronic device which are formed on the first substrate surface. The packaging base has a first base surface and a second base surface opposite to each other, and comprises conductive channels extending from the first base surface to the second base surface. The opto-electronic chip is stacked on the packaging base in such a manner that the first substrate surface faces the packaging base, and the electrodes formed on the first substrate surface of the opto-electronic chip are bonded with corresponding conductive channels in the packaging base.
Abstract:
A darkroom type security inspection apparatus and a method of performing an inspection using the darkroom type security inspection apparatus. An apparatus includes a housing constituting a closed darkroom, and assemblies disposed inside the housing. The assemblies disposed inside the housing include: a sample collecting unit configured to collect a sample, a conveyor unit, and a X-ray detection unit to detect a position of the objected to be inspected, wherein the X-ray detection unit is configured to determine the position of the objected to be inspected within the sampling assembly so that the object to be inspected together with the conveyor unit is conveyed to an expected position; and a sample processing assembly, wherein the assemblies disposed inside the housing are communicated by fittings or connectors.
Abstract:
The present disclosure relates to a method and device for estimating a point spread function. In one implementation, a method includes capturing, by a scanning device, an image by scanning a plurality of rectangle blocks which are same sized and closely arranged, wherein the plurality of rectangle blocks are made of different materials and/or have different mass thicknesses, and an incident direction of rays is perpendicular to a scanning direction and a surface of the plurality of rectangle blocks arranged closely during scanning; obtaining line spread functions for two directions along a length side and a width side of each of the rectangle blocks based on the scanned image, and obtaining standard deviation parameters of the line spread functions; and combining the standard deviation parameters for the two directions to obtain a two dimensional Point Spread Function (PSF) parameter so as to estimate the point spread function.
Abstract:
Disclosed is a method and device for estimating weight of an object to be inspected in an inspection system. An effective atomic number and a high-energy gray value of the dual-energy corresponding to each pixel of the object to be inspected are obtained by a dual-energy radiation scanning. A mass-thickness value for a corresponding pixel is obtained from a pre-created mass-thickness attenuation curve by utilizing the effective atomic numbers and the high-energy gray value of the dual-energy for respective pixels. Weight information for at least a part of the object to be inspected is calculated by multiplying the mass-thickness value by the area of the pixel. Such a method may accurately calculate the weight of the object to be inspected and save the cost for a conventional weighing hardware.
Abstract:
A vehicle inspection method and system are disclosed. In one aspect, the method includes acquiring a transmission image of an inspected vehicle. The method further includes acquiring a transmission image template of a vehicle model corresponding to the model of the inspected vehicle from a database. The method further includes performing registration on the transmission image of the inspected vehicle and the transmission image template. The method further includes determining a difference between a transmission image after the registration and a transmission image template after the registration, to obtain a difference area of the transmission image of the vehicle relative to the transmission image template. The method further includes processing the difference area to determine whether the vehicle carries a suspicious object or not. In some embodiments, this solution can avoid the problems of a detection loophole and a poor effect of manually determining an image in a conventional manner, and is important to assist the security inspection for small vehicles.