Abstract:
A pipelined run-to-completion processor executes a pop stack absolute instruction. The instruction includes an opcode, an absolute pointer value, a flag don't touch bit, and predicate bits. If a condition indicated by the predicate bits is not true, then the opcode operation is not performed. If the condition is true, then the stack of the processor is popped thereby generating an operand A. The absolute pointer value is used to identify a particular register of the stack, and the content of that particular register is an operand B. The arithmetic logic operation specified by the opcode is performed using operand A and operand B thereby generating a result, and the content of the particular register is replaced with the result. If the flag don't touch bit is set to a particular value, then the flag bits (carry flag and zero flag) are not affected by execution of the instruction.
Abstract:
Circuitry to provide in-order packet delivery. A packet descriptor including a sequence number is received. It is determined in which of three ranges the sequence number resides. Depending, at least in part, on the range in which the sequence number resides it is determined if the packet descriptor is to be communicated to a scheduler which causes an associated packet to be transmitted. If the sequence number resides in a first “flush” range, all associated packet descriptors are output. If the sequence number resides in a second “send” range, only the received packet descriptor is output. If the sequence number resides in a third “store and reorder” range and the sequence number is the next in-order sequence number the packet descriptor is output; if the sequence number is not the next in-order sequence number the packet descriptor is stored in a buffer and a corresponding valid bit is set.
Abstract:
A Network Interface Device (NID) of a web hosting server implements multiple virtual NIDs. For each virtual NID there is a block in a memory of a transactional memory on the NID. This block stores configuration information that configures the corresponding virtual NID. The NID also has a single managing processor that monitors configuration of the plurality of virtual NIDs. If there is a write into the memory space where the configuration information for the virtual NIDs is stored, then the transactional memory detects this write and in response sends an alert to the managing processor. The size and location of the memory space in the memory for which write alerts are to be generated is programmable. The content and destination of the alert is also programmable.
Abstract:
An entropy storage ring includes an input node, a plurality of serial-connected stages, and an output node. Each stage includes an XOR (or XNOR) circuit, a delay element having an input coupled to the XOR output, and a combinatorial circuit having an output coupled to a second input of the XOR. The combinatorial circuit may be a NAND, NOR, AND or OR gate. A first input of the XOR is the data input of the stage. The output of the delay element is the data output of the stage. A first input of the combinatorial circuit is coupled to receive an enable bit from a configuration register. A second input of the combinatorial circuit is coupled to the ring output node. In operation, a bit stream is supplied onto the ring input node. Feedback of multiple stages are enabled so that the bit stream undergoes complex permutation as it circulates.
Abstract:
An automaton hardware engine employs a transition table organized into 2n rows, where each row comprises a plurality of n-bit storage locations, and where each storage location can store at most one n-bit entry value. Each row corresponds to an automaton state. In one example, at least two NFAs are encoded into the table. The first NFA is indexed into the rows of the transition table in a first way, and the second NFA is indexed in to the rows of the transition table in a second way. Due to this indexing, all rows are usable to store entry values that point to other rows.
Abstract:
An automaton hardware engine employs a transition table organized into 2n rows, where each row comprises a plurality of n-bit storage locations, and where each storage location can store at most one n-bit entry value. Each row corresponds to an automaton state. In one example, at least two NFAs are encoded into the table. The first NFA is indexed into the rows of the transition table in a first way, and the second NFA is indexed in to the rows of the transition table in a second way. Due to this indexing, all rows are usable to store entry values that point to other rows.
Abstract:
A transactional memory (TM) includes a control circuit pipeline and an associated memory unit. The memory unit stores a plurality of rings. The pipeline maintains, for each ring, a head pointer and a tail pointer. A ring operation stage of the pipeline maintains the pointers as values are put onto and are taken off the rings. A put command causes the TM to put a value into a ring, provided the ring is not full. A get command causes the TM to take a value off a ring, provided the ring is not empty. A put with low priority command causes the TM to put a value into a ring, provided the ring has at least a predetermined amount of free buffer space. A get from a set of rings command causes the TM to get a value from the highest priority non-empty ring (of a specified set of rings).
Abstract:
A bit stream having non-deterministic entropy is generated by a Self-Timed Logic Entropy Bit Stream Generator (STLEBSG). The STLEBSG includes an incrementer and a linear feedback shift register (LFSR), both implemented in self-timed logic as parts of an asynchronous state machine. In response to a command, the incrementer asynchronously increments a number of times and then stops, where the number of times is determined by command. For each increment of the incrementer, the LFSR undergoes a state transition. As the incrementer increments, the LFSR outputs the bit stream. If the command is a run repeatedly command, then after the incrementer stops the incrementer is reinitialized and then again increments the number of times. This incrementing, stopping, reinitializing, and incrementing process is repeated indefinitely. Another command causes the incrementer to be loaded. Another command causes the LFSR to be loaded.
Abstract:
A transactional memory (TM) includes a control circuit pipeline and an associated memory unit. The memory unit stores a plurality of rings. The pipeline maintains, for each ring, a head pointer and a tail pointer. A ring operation stage of the pipeline maintains the pointers as values are put onto and are taken off the rings. A put command causes the TM to put a value into a ring, provided the ring is not full. A get command causes the TM to take a value off a ring, provided the ring is not empty. A put with low priority command causes the TM to put a value into a ring, provided the ring has at least a predetermined amount of free buffer space. A get from a set of rings command causes the TM to get a value from the highest priority non-empty ring (of a specified set of rings).
Abstract:
A transactional memory (TM) receives an Atomic Metering Command (AMC) across a bus from a processor. The command includes a memory address and a meter pair indicator value. In response to the AMC, the TM pulls an input value (IV). The TM uses the memory address to read a word including multiple credit values from a memory unit. Circuitry within the TM selects a pair of credit values, subtracts the IV from each of the pair of credit values thereby generating a pair of decremented credit values, compares the pair of decremented credit values with a threshold value, respectively, thereby generating a pair of indicator values, performs a lookup based upon the pair of indicator values and the meter pair indicator value, and outputs a selector value and a result value that represents a meter color. The selector value determines the credit values written back to the memory unit.