摘要:
An antenna device (100) includes an antenna element (101) and an electric conductor plate (102) provided so as to face the antenna element (101). The antenna element (101) and the electric conductor plate (102) are short-circuited by a short-circuit section (104). The antenna element (101) is connected with both of external and internal electric conductors (122) and (123) constituting a feed line (121).
摘要:
There is provided a planar optical waveguide element in which an optical waveguide core comprises an inner side core having protruding portions that form a rib structure, and an outer side core that is provided on top of the inner side core and that covers circumferential surfaces of the protruding portions, wherein a refractive index of the outer side core is lower than an average refractive index of the inner side core. The structure of the planar optical waveguide element can be applied even when the core is formed from a material having a higher refractive index than that of a silica glass-based material such as silicon (Si) or silicon nitride (SixNy).
摘要:
An antenna that is small in size, has such input characteristics as to secure consistency in each band, and is capable of maintaining omnidirectionality. An antenna includes a grounded conductor, a shorting pin that is formed with a conductor, and a radiation conductor that has one end connected to the grounded conductor via the shorting pin, has the other end left open, and receives power supplied from a feeding point located at the one end. The radiation conductor is folded at a portion between the one end and the other end, and forms a lower arm closer to the grounded conductor and a folded upper arm, with at least part of the lower arm and the upper arm having a meandered portion.
摘要:
A method for manufacturing a planar optical waveguide device including a core of which a top face is provided with a groove section filled with a groove section filler made of a low refractive index material having a refractive index lower than that of the core, the method including; a first high refractive index material layer forming step of forming a high refractive index material layer; a low refractive index material layer forming step of forming a low refractive index material layer made of the low refractive index material on the high refractive index material layer; a groove section filler forming step of forming the groove section filler by trimming both lateral portions of the low refractive index material layer; and a second high refractive index material layer forming step of forming a high refractive index material layer so as to fill the both sides of the lateral portions of the groove section filler.
摘要:
There is provided an optical fiber communication system restricting enlargement of the diameter of an optical fiber as well as enabling achievement of a large-capacity optical communication with a small number of optical fibers.An optical fiber communication system 100 includes an optical transmitter 10 transmitting a plurality of optical signals in parallel, a multicore fiber 20 in which outer circumferences of a plurality of cores are covered with a common clad, and the respective optical signals transmitted in parallel from the optical transmitter 10 are input into the cores, and an optical receiver 30 receiving the optical signals output in parallel from the respective cores of the multicore fiber, wherein the optical transmitter 10 and the optical receiver 30 perform a MIMO communication.
摘要:
There is provided a planar optical waveguide element in which an optical waveguide core comprises an inner side core having protruding portions that form a rib structure, and an outer side core that is provided on top of the inner side core and that covers circumferential surfaces of the protruding portions, wherein a refractive index of the outer side core is lower than an average refractive index of the inner side core. The structure of the planar optical waveguide element can be applied even when the core is formed from a material having a higher refractive index than that of a silica glass-based material such as silicon (Si) or silicon nitride (SixNy).
摘要:
A photonic band gap fiber is provided having multiple air holes in a silica portion extending in the longitudinal direction of the fiber. The fiber includes a cladding containing an air hole periodic structure in an extended triangular lattice configuration, wherein first rows each having a number of air holes at a first pitch are arranged alternately in the cross section of the fiber with multiple second rows of air holes each with multiple air holes at a second pitch which is twice the first pitch. The fiber further includes an air hole core.
摘要:
A graded-index multimode fiber includes a core containing fluorine and a cladding which is provided at an outer periphery of the core, and the fiber has a refractive index profile which satisfies the following Formula (1): n ( r ) = { n 1 [ 1 - 2 Δ ( r a ) α ] 1 / 2 ( O ≤ r ≤ a ) n 1 ( 1 - 2 Δ ) 1 / 2 ( r > a ) ( 1 ) where n(r) is a refractive index of the optical fiber at a distance “r” from the center of the core, n1 is a refractive index at the center of the core, Δ is a relative refractive index difference of the center of the core with respect to the cladding, “a” is a core radius, and α is a refractive index profile exponential parameter.
摘要:
A connection method for a photonic crystal fiber for connecting the photonic crystal fiber and a fiber to be connected, the photonic crystal fiber including a cladding region having a number of microholes and a core region having a same refractive index as that of the cladding region, includes the steps of: abutting respective end faces of the photonic crystal fiber and the fiber to be connected each other; after the abutting, performing a main discharge in which an abutted portion is heated by an electric discharge under a first condition; and after the main discharge, performing an additional discharge in which the connection portion is heated by an electric discharge at least once under a second condition to increase a splice strength.
摘要:
A higher order mode dispersion compensating fiber includes an optical fiber and a first loss layer which is provided within the fiber and which attenuates a lower order mode propagating through the optical fiber while not attenuating a higher order mode which is higher than the lower order mode. A dispersion compensating fiber mode converter for a higher order fiber includes a single mode fiber; a higher order mode dispersion compensating fiber; and a fused and extended portion which has been formed by fusing and extending the single mode fiber and the higher order mode fiber. The fused and extended portion converts between the LP01 mode of the single mode fiber and the LP02 mode of the higher order mode dispersion compensating fiber.