Abstract:
A cryostat having a connecting branch which is connected to a coolant chamber and is open on the end side. The connecting branch expands from an inside diameter to an outside diameter.
Abstract:
A converter with a damping mechanism for preventing resonances that includes a rectifier, an inverter and an intermediate circuit which connects the rectifier to the inverter. The intermediate circuit includes a first conductor connected to a first potential, a second conductor connected to a second potential that is different than said first potential and a current-compensated choke looped into the first conductor and the second conductor. The current-compensated choke includes a first winding and a second winding, wherein a first current flowing from the rectifier to the inverter flows through the first winding and a second current flowing back from the inverter to the rectifier flows through the second winding.
Abstract:
Cryostat having a connecting branch which is connected to a cooling chamber and is open on the end side, raised parts and/or depressions increasing the wall surface being provided on at least part of the inner wall of the connecting branch.
Abstract:
A circuit arrangement allows a converter to be operated with supply voltages oscillating within broad limits. The intermediate circuit voltage of the converter is controlled to avoid unacceptably high currents, so that the intermediate circuit voltage is always higher than the peak value of the rectified supply voltage. For at least this purpose, the peak value of the rectified supply voltage is determined and compared to that of the intermediate circuit voltage. If the intermediate circuit voltage is less than the peak value of the rectified supply voltage, the intermediate circuit voltage is increased to exceed the originally set setpoint value. This prevents free-wheeling diodes from becoming conductive at undesirable times and causing excessive currents.
Abstract:
An apparatus is provided for delivering a substance containing hydrocarbons from a reservoir. The reservoir can be subjected to thermal energy in order to reduce the viscosity of the substance. The apparatus includes at least one conductor loop for inductively applying current as an electric/electromagnetic heater. A conductor of the conductor loop is surrounded in at least one section by a liquid-carrying conduit. The liquid-carrying conduit is perforated such that when a liquid is supplied the liquid penetrates into the reservoir from the liquid-carrying conduit via a perforation.
Abstract:
A device stores electric energy, in particular for the traction supply of a rail vehicle. The device has a plurality of chargeable storage cells with cell poles, a cooling body that is in thermal contact with the storage cells, and a plurality of bridge members, by way of which two of the plurality of storage cells are in electric contact. Accordingly, at least some of the bridge members contact the storage cells on the sides thereof facing the cooling body. A bridge member contains a connecting web having two recesses and two connecting parts, each being introduced into one of the recesses. Each connecting part is connected to a cell pole of a storage cell to be contacted. The connecting parts are fixed non-rotatably and non-displaceably in a connecting web by a releasable tensioning device. Thus the efficiency and service life of the energy storage device can be increased by reducing the thermal resistance between the storage cells and the cooling body.
Abstract:
A device is provided for extracting a hydrocarbon-containing substance from a reservoir. Thermal energy can be applied to the reservoir in order to reduce the viscosity of the substance. The device includes at least one conductor loop for inductively supplying electric current, to provide electric and/or electromagnetic heating, and a fluid conducting device for transporting and introducing a solvent fluid into the reservoir, to further reduce the viscosity of the substance.
Abstract:
A device stores electric energy, in particular for the traction supply of a rail vehicle. The device has a plurality of chargeable storage cells with cell poles, a cooling body that is in thermal contact with the storage cells, and a plurality of bridge members, by way of which two of the plurality of storage cells are in electric contact. Accordingly, at least some of the bridge members contact the storage cells on the sides thereof facing the cooling body. A bridge member contains a connecting web having two recesses and two connecting parts, each being introduced into one of the recesses. Each connecting part is connected to a cell pole of a storage cell to be contacted. The connecting parts are fixed non-rotatably and non-displaceably in a connecting web by a releasable tensioning device. Thus the efficiency and service life of the energy storage device can be increased by reducing the thermal resistance between the storage cells and the cooling body.
Abstract:
A superconductive magnetic coil is located in a cryostat for cooling purposes which is filled only up to a certain fill level with liquid helium. A helium gas phase having a temperature stratification, in which, for example, temperatures are present that can lead to a collapse of the superconductivity, forms over said helium accumulation. The magnetic coil is therefore subdivided into at least two partial regions having differing heat transfer between the coil and the surrounding medium. In a first partial region of the coil, in the surroundings of which a sufficiently low temperature for cooling is present, the heat transfer is high, while the magnetic coil in a second partial region, in the surroundings of which the temperature of the cooling medium is above a critical value, exhibits heat insulation. Consequently, no heat is exchanged between the coil and the surroundings in the second partial region, while cooling of the coil takes place in the first partial region.
Abstract:
A device for the in-situ extraction of a hydrocarbon-containing substance, while reducing the viscosity thereof, from an underground deposit, has at least one injection pipeline extending in the deposit and at least one production pipeline leading out of the deposit, which together form a so-called well pair. The injection and production pipelines each have a starting region extending above ground in some areas, and an active region connecting to the starting region inside the deposit. With the method, during a heating phase hot steam is applied to the injection and production pipelines, while during a production phase hot steam is applied only to the injection pipeline. Furthermore, the active region of the injection pipeline is additionally configured as an induction heater regarding the surrounding area in the deposit. In the associated device, for example, the well pair formed by the injection pipeline and production pipeline can be configured as electrodes.