Abstract:
An ophthalmic surgical tool has a marker positioned at a distal portion of the ophthalmic surgical tool. The distal portion of the ophthalmic surgical tool is inserted into an eye along with the marker to perform surgeries in the eye. An imaging device captures images of the fundus of the eye including the distal portion of the ophthalmic surgical tool. An image processor processes the captured images to identify and extract the marker from the captured images. The marker has a high-contrast feature in a visible light or infrared light range or other spectral ranges. Thus, the image processor may identify and extract the marker from the captured images. Indicators may be generated based on the marker and be overlaid with the captured or processed images of the fundus and displayed to a user to indicate surgical information to the user.
Abstract:
A method for display optimization includes receiving an image of a surgical site from an imaging system. The method further includes determining a region of interest at a first location within the image. The method further includes generating a surgical data overlay at a first position, the first position associated with the first location of the region of interest. The method further includes detecting that the region of interest has moved to a second location within the image. The method further includes, in response to detecting that the region of interest has moved to the second location, moving the surgical data overlay to a second position, the second position associated with the second location. The method further includes displaying the image and surgical data overlay to a user.
Abstract:
An ophthalmic visualization system can include an imaging device configured to acquire images of a surgical field; a computing device configured to determine an area of interest based on the images; and a display device in communication with the computing device and a surgical microscope, wherein the display device is configured to provide a graphical overlay onto at least a portion of a field of view of the surgical microscope, and wherein the graphical overlay includes a magnified image of the area of interest. A method of visualizing an ophthalmic procedure can include receiving images of a surgical field acquired by an imaging device; identifying an area of interest; generating a graphical overlay including a magnified image of the area of the interest; and outputting the graphical overlay to a display device such that the graphical overlay is positioned over a field of view of a surgical microscope.