Abstract:
A communication jack having crosstalk compensation features for overall crosstalk interference reduction is disclosed. In one embodiment, the jack is configured to receive a plug to form a communication connection, and comprises jack contacts disposed in the jack, with each contact having at least a first surface and a second surface. Upon the plug being received by the jack, the plug contacts interface with the first surface of the jack contacts. The jack further includes a first capacitive coupling connected between two pairs of jack contacts to compensate for near end crosstalk, with the first capacitive coupling being connected to the pairs of jack contacts along the second surface adjacent to where the plug contacts interface with the jack contacts. A far end crosstalk compensation scheme is also set forth.
Abstract:
A communication jack, system using the jack, and method of fabricating the jack are disclosed. The jack includes a cavity configured to accept a communication plug to form a communication connector. The jack includes a plurality of plug interface contacts that extend into the cavity such that a plug inserted into the cavity makes electrical contact with the plug interface contacts at plug/jack interfaces of the plug interface contacts. One or more of the plug interface contacts is formed from multiple conductive layers. The conductive layers are movable relative to each other at at least one end. A dielectric layer or flexible printed circuit board may be disposed between the conductive layers.
Abstract:
A fiber optic stub fiber connector for reversibly and nondestructively terminating an inserted field fiber having a buffer over at least a portion thereof. The connector includes a housing and a ferrule including a stub fiber disposed within and extending from a bore through the ferrule. The ferrule is generally at least partially disposed within and supported by the housing. The connector further includes a reversible actuator for reversibly and nondestructively terminating the inserted field fiber to the stub fiber. The reversible actuator includes a buffer clamp for engaging with the buffer to simultaneously provide reversible and nondestructive strain relief to the terminated field fiber.
Abstract:
An intelligent network patch field management system and specialized cross-connect cable are provided to help guide, monitor, and report on the process of connecting and disconnecting patch cords plugs in a cross-connect patching environment. The system is also capable of monitoring patch cord connections to detect insertions or removals of patch cords or plugs. The cross-connect cable is provided with LED's in both of the cable plugs. When only one plug of the cross-connect cable is plugged into a port, the LED associated with that plug is switched out of the circuit, while the LED in the unplugged plug remains in the circuit and can still be illuminated by the system.
Abstract:
An intelligent network patch field management system is provided that includes active electronic hardware, firmware, mechanical assemblies, cables, and software that guide, monitor, and report on the process of connecting and disconnecting patch cords plugs in an interconnect or cross-connect patching environment. The system is also capable of monitoring patch cord connections to detect insertions or removals of patch cords or plugs. In addition, the system can map embodiments of patch fields.
Abstract:
An intelligent network physical layer management system is provided that includes hardware that tracks the connection of plugs of patch cords in interconnect or cross-connect patching environments. RFID signaling is combined with near-field communication techniques to provide a reliable physical layer management system. In interconnect configurations, RFID tags are associated with switch ports of an Ethernet switch, enabling the system of the present invention to detect patch cord insertion and removal at switch ports and to receive information about the switch ports. In cross-connect configurations, RFID signaling is used to track the connections of patch cords between two patch panels. Systems according to the present invention avoid the problems associated with traditional galvanic connections previously used for tracking patch cord connections. An alternative common-mode system is also described.
Abstract:
The invention is a modular cable termination plug having a conductor divider having an entrant barb and a plurality of divider channels, a load bar having a plurality of through holes and a plurality of slots, and a plurality of contact terminals. Additionally, the invention may include a housing, a strain relief collar and a strain relief boot.
Abstract:
A self-laminating rotating cable marker label is constructed of a transparent film having a first adhesive area, an adhesive-free smooth area, and a second adhesive area. A print-on area forms one side of the transparent film, the print-on area adapted to receive indicia identifying the cable about which the marker label is applied. A perforation extends across the transparent film providing a line of separation of the transparent film. When wrapped around a cable, the second adhesive area overlies the print-on area such that the cable identifying indicia is visible through the transparent second adhesive area. As the transparent film is wrapped around the cable, the first adhesive area adheres to the cable. The remainder of the transparent film is rotated, breaking the perforation, whereby the smooth area of the film in contact with the cable provides smooth rotation of the label around the cable.
Abstract:
A self-laminating rotating cable marker label is constructed of a transparent film having a first adhesive area, an adhesive-free smooth area, and a second adhesive area. A print-on area forms one side of the transparent film, the print-on area adapted to receive indicia identifying the cable about which the marker label is applied. A perforation extends across the transparent film providing a line of separation of the transparent film. When wrapped around a cable, the second adhesive area overlies the print-on area such that the cable identifying indicia is visible through the transparent second adhesive area. As the transparent film is wrapped around the cable, the first adhesive area adheres to the cable. The remainder of the transparent film is rotated, breaking the perforation, whereby the smooth area of the film in contact with the cable provides smooth rotation of the label around the cable.
Abstract:
An apparatus and method for crosstalk compensation in a jack of a modular communications connector includes a flexible printed circuit board connected to jack contacts and to connections to a network cable. The flexible printed circuit board includes conductive traces arranged as one or more couplings to provide crosstalk compensation.