Abstract:
A communication connector including a housing and a plurality of contact pairs arranged relative to the housing. One of the plurality of contact pairs includes a first conductor termination zone centerline, and another contact pair includes a second conductor termination zone centerline, wherein the second conductor termination zone centerline is an approximately perpendicular bisector of the first conductor termination zone centerline.
Abstract:
A faceplate assembly is disclosed. The faceplate assembly includes a cover and a backing plate. The cover has at least one hood positioned at an edge of the cover. The backing plate is connected to the cover. The hood creates an opening between the cover and the backing plate to enable cables to be routed therethrough. The backing plate also has an outer edge with a split to enable the backing plate to be installed over pre-installed cables.
Abstract:
A communication jack which includes a housing with an aperture for receiving a communication plug, and a circuit board at least partially within the housing. The circuit board includes crosstalk compensation elements. A plurality of plug interface contacts are connected to the circuit board. At least one of the plurality of plug interface contacts includes a contact element layered with at least one spring element.
Abstract:
A communication plug is described. The communication plug can have a load bar, housing, and a divider. The load bar has a first half with first conductor receiving apertures and a second half with second conductor receiving apertures with a hinge connecting the first half and the second half. The load bar folds around the divider and then is inserted into the housing.
Abstract:
The present invention generally relates to communication connectors and internal components thereof. In one embodiment, the present invention is a communication jack comprising back-rotated plug interface contacts having variable cross-sectional widths. In another embodiment, the present invention is a communication jack having back-rotated plug interface contacts where at least two of the plug interface contacts have a differing beam length. In yet another embodiment, the present invention is a communication jack having back-rotated plug interface contacts where at least two of the plug interface contacts have opposing bends in a deflection zone.
Abstract:
A communication plug is described. The communication plug has a communication cable with a plurality of conductors, a plug housing, and a cable manager partially enclosed within the plug housing. The cable manager has a load bar with a plurality of holes, a first cable management section connected to the load bar via a first hinge, and a second cable management section connected to the load bar via a second hinge. The first and second cable management sections are configured to fold together and partially enclose the cable before the cable manager is inserted into the plug housing.
Abstract:
The present invention generally relates to the field of network communications, and more specifically to networks for crosstalk reduction/compensation and communication connectors which employ such networks. In an embodiment, the present invention is an RJ45 jack with an orthogonal. compensation network to meet CAT6A or higher performance standard. For the 3:6-4:5 wire-pair combination, the orthogonal compensation network begins in the jack nose (plug interface contact (PIC)) section, and utilizes a flexible printed circuit board in the nose section, split PIC contacts in the rear nose, and circuitry in the rigid printed circuit board to create the orthogonal compensation network.
Abstract:
The present invention relates to the field of telecommunication jacks, and more specifically, to network jacks adapted for operating with more than one type of a plug. In an embodiment, the present invention is a communication connector that includes a housing configured to receive a communication plug, a printed circuit board connected to the housing, and a rocker switch pivotally connected to the housing, the rocker switch configured for actuating the printed circuit board. In a variation of this embodiment, the communication connector could be used in a communication system having communication equipment therein.
Abstract:
The present invention generally relates to network connectors, and more particularly, to apparatuses, systems, and methods associated with network jacks having compatibility with more than one plug and corresponding plugs. In one embodiment, the present invention is a jack having multiple printed circuit boards, wherein each circuit board is used for connection to a particular style of a plug. In one embodiment, the jack according to the present invention is compatible with an RJ45 plug.
Abstract:
A connector module is disclosed having physical dimensions for being installed into standardized, or pre-existing, structures such as a patch panel including pre-populated slot openings. The connector module provides simple field termination for different sized single pair cables using screw-down/cage-clamp for the bare single pair of conductors emerging from a centralized power equipment to be a pluggable mating connector terminating the field wires.