Abstract:
The present invention relates to a peripheral device for image display, which comprises a hollow spot for holding the peripheral device, which then comprises a base and a shaft, wherein the shaft was located on the base, of which the shaft and the slot are a hole and shaft assembly case and the shaft maintains its degree of freedom in the slot, wherein the base can not only rotate but also slide. In addition, the base comprises at least one positioning hole and the image display device comprises at least one positioning pin, when the positioning hole is fitted by the positioning pin, the degree of freedom of the rotation is thus restricted. In comparison with prior art, the ease of use is obvious, and the design flexibility is abundant.
Abstract:
Certain aspects of a method and system for a process sensor to compensate SoC parameters in the presence of IC process manufacturing variations are disclosed. Aspects of one method may include determining an amount of process variation associated with at least one transistor within a single integrated circuit. The determined amount of process variation may be compensated by utilizing a process dependent current, a bandgap current, and a current associated with a present temperature of the transistor. The process dependent current, the bandgap current and the current associated with the present temperature of the transistor may be combined to generate an output current. A voltage generated across a variable resistor may be determined based on the generated output current.
Abstract:
A method of fabricating a semiconductor integrated circuit including a power diode includes providing a semiconductor substrate of first conductivity type, fabricating a integrated circuit such as a CMOS transistor circuit in a first region of the substrate, and fabricating a power diode in a second region in the semiconductor substrate. Dielectric material is formed between the first region and the second regions thereby providing electrical isolation between the integrated circuit in the first region and the power diode in the second region. The power diode can comprise a plurality of MOS source/drain elements and associated gate elements all connected together by one electrode of the diode, and a semiconductor layer in the second region can function as another source/drain of the power diode.
Abstract:
A method of fabricating a semiconductor integrated circuit including a power diode includes providing a semiconductor substrate of first conductivity type, fabricating a integrated circuit such as a CMOS transistor circuit in a first region of the substrate, and fabricating a power diode in a second region in the semiconductor substrate. Dielectric material is formed between the first region and the second regions thereby providing electrical isolation between the integrated circuit in the first region and the power diode in the second region. The power diode can comprise a plurality of MOS source/drain elements and associated gate elements all connected together by one electrode of the diode, and a semiconductor layer in the second region can function as another source/drain of the power diode.
Abstract:
A method of fabricating a semiconductor integrated circuit including a power diode includes providing a semiconductor substrate of first conductivity type, fabricating a integrated circuit such as a CMOS transistor circuit in a first region of the substrate, and fabricating a power diode in a second region in the semiconductor substrate. Dielectric material is formed between the first region and the second regions thereby providing electrical isolation between the integrated circuit in the first region and the power diode in the second region. The power diode can comprise a plurality of MOS source/drain elements and associated gate elements all connected together by one electrode of the diode, and a semiconductor layer in the second region can function as another source/drain of the power diode.
Abstract:
A network test architecture includes a plurality of modules for performing a plurality of functions, each of the plurality of modules having a unique identifier. An additional module for performing an additional function has an additional unique identifier. A control bus is connected among the plurality of modules; a data bus is connected among the plurality of modules; and a power bus is connected among the plurality of modules. A controller controls operation, data transmission, and powering of the plurality of modules and the additional module, respectively, through the control bus, the data bus, and the power bus, the controller using the unique identifier and the additional unique identifier of the plurality of modules upon simultaneous connection of the control bus, the data bus, and the power bus to the additional module.
Abstract:
A vertical semiconductor rectifier device includes a semiconductor substrate of first conductivity type and having a plurality of gates insulatively formed on a first major surface and a plurality of source/drain regions of the first conductivity type formed in surface regions of second conductivity type in the first major surface adjacent to the gates. A plurality of channels of the second conductivity type each abuts a source/drain region and extends under a gate, each channel being laterally graded with a sloped P-N junction separating the channel region from the substrate of first conductivity type. In fabricating the vertical semiconductor rectifier device, a partial ion mask is formed on the surface of the semiconductor with the mask having a sloped surface which varies the path length of ions through the mask to form laterally-graded channel regions.
Abstract:
A method of manufacturing an environmental protective paper doll includes the steps of using recycle paper as the manufacturing material; adding appropriate proportion of water to the paper pulp after a slight filtering to make a paste; pressing the vacuum mold on the protruded mold plate after tying the net; submerging in a trough containing the pasty paper pulp; drawing out the liquid in the vacuum shaping mold to facilitate the formation of an embryo layer with appropriate thickness on the tying net of the protrusion member; engaging the upper mold and the lower mold together and preliminarily removing the water content; baking the semi-finished embryo layer for dehydration; pasting the front and rear halves with glue; trimming the rough edge and coating the paper surface with a layer of golden paint to increase the hardness of the surface; and then painting with the stylish colors and forming the paper doll.
Abstract:
A semiconductor current limiting device is provided by a two-terminal vertical N(P)-channel MOSFET device having the gate, body, and source terminals tied together as the anode and the drain terminal as the cathode. The doping profile of the body is so tailored with ion implantation that a depletion region pinches off to limit current. The body comprises a shallow implant to form a MOS channel and an additional deep implant through a spacer shielding the channel area. Implanted a higher energies and at an acute angle, the deep implant protrudes into the regular current path of the vertical MOSFET.
Abstract:
A semiconductor rectifying device which emulates the characteristics of a low forward voltage drop Schottky diode and which is capable of a variety of electrical characteristics from less than 1 A to greater than 1000 A current with adjustable breakdown voltage. The manufacturing process provides for uniformity and controllability of operating parameters, high yield, and readily variable device sizes. The device includes a semiconductor body with a guard ring on one surface to define a device region in which are optionally formed a plurality of conductive plugs. Between the guard ring and the conductive plugs are a plurality of source/drain, gate and channel elements which function with the underlying substrate in forming a MOS transistor. The channel regions are defined by using the photoresist mask for the gate oxide with the photoresist mask isotropically etched to expose a peripheral portion of the gate oxide (and gate electrode) with ions thereafter implanted through the exposed gate for forming the channel region. The source/drain (e.g. source) regions can be formed by ion implantation or by out-diffusion from a doped polysilicon layer.