摘要:
A communication system performs burst noise cancellation. A transmitter produces and transmits a spread signal that comprises at least one known-value symbol spread by a plurality of non data-carrying orthogonal codes and data symbols spread by at least one data-carrying orthogonal code. The transmitter transmits the spread signal across a communication link that introduces burst noise. A burst noise detector determines burst noise affected chips of the orthogonal codes. A weight computation functional block calculates a plurality of complex-valued combining weights based upon the burst noise affected chips. A vector de-spreader and a linear combiner operate in combination to use the plurality of non data-carrying orthogonal codes, the at least one data-carrying orthogonal code, and the plurality of complex-valued combining weights to de-spread the received spread signal to produce the data symbols with the burst noise substantially removed.
摘要:
ZEB (zero excess bandwidth) modulation. The modulation rate of a signal is increased to the entirety of a communication channel's available bandwidth. Spectral zeroes at the edges of the available bandwidth now coincide with spectral zeroes at the edges of the Nyquist band and lead to ISI (intersymbol interference), which cannot be eliminated by equalization. Thus, in a ZEB system intersymbol interference (ISI) is intentionally allowed and dealt with by the known technique of TH (Tomlinson-Harashima) precoding. Comparison of conventional zero-ISI systems with ZEB systems, both exhibiting identical transmit spectra with finite spectral roll offs towards the edges of the available bandwidth, illustrate significant gains in channel throughput achievable by the ZEB systems. Similar gains can hardly be achieved by more sophisticated channel coding for zero-ISI systems. For ZEB systems an effective spectral shaping involving a simple infinite impulse response (IIR) of the overall channel is proposed.
摘要:
Signal processing under attenuated transmission conditions. Within an orthogonal signal space, the number of orthogonal signals that are used to transmit information from a transmitter to a receiver is reduced and the transmitted power of each of the now remaining orthogonal signals is modified; this may involve increasing the power of all of the remaining orthogonal signals equally or alternatively modifying them individually. The same modulation used before the reduction may also be used afterwards; within communication systems having multiple transmitter-receiver paths, this will ensure that the communication system's throughput and efficiency will remain unchanged even when one (or more) transmitter-receiver paths are highly attenuated. In addition, robust mode operation is provided for ranging and registering of transmitter devices when entering the communication system. In addition, the unused orthogonal signals may be employed to support interference cancellation of those orthogonal signals that are used to transmit information.
摘要:
Cancellation of interference in a communication system with application to S-CDMA. A relatively straight-forward implemented and computationally efficient approach of selecting a predetermined number of unused codes is used to perform weighted linear combination selectively with each of the input spread signals in a multiple access communication system. If desired, the predetermined number of unused codes is always the same in each implementation. Alternatively, the predetermined number of unused codes is selected from within a reordered code matrix using knowledge that is shared between the two ends of a communication system, such as between the CMs and a CMTS. While the context of an S-CDMA communication system having CMs and a CMTS is used, the solution is generally applicable to any communication system that seeks to cancel narrowband interference. Several embodiments are also described that show the generic applicability of the solution across a wide variety of systems.
摘要:
A wireless device and system employs a two-dimensional (2-D) Trellis code that can be applied to Quadrature Phase Shift Keying (QPSK) and higher order Quadrature Amplitude Modulation (QAM) constellations. The Trellis codes employed have optimal Euclidean distance properties for QPSK constellations, and have very good Euclidean distance properties for higher-order QAM constellations. The Trellis codes are suited for transmission systems that adopt multi-mode QPSK and QAM constellations with different data rates since the same Trellis code can be applied to all modulation formats and the same decoder can be used at the receiver for all modulation formats. Modulation formats include QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM and may be extended to even higher order modulations formats.
摘要:
A two-stage block synchronization and scrambling module includes a synchronization PRNG module, a scramble PRNG module, a summing module, and a storage module. The synchronization PRNG module is clocked once per N+1 bit PCS frame (N arbitrary) to produce a synchronization bit and a pseudo-random starting state for the scramble PRNG. The scramble PRNG module is clocked N times per PCS frame to produce a cipher stream starting with a pseudo-random state from the synchronization PRNG. The summing module is operably coupled to sum the cipher stream and a PCS frame payload to produce scrambled payload. The storage module is operably coupled to store the scrambled payload with the synchronization bit. Synchronization bits from successive frames are a running bit-serial representation of the synchronization PRNG state and are used by the receiver to synchronize with the transmit scrambler.
摘要:
LDPC (Low Density Parity Check) coded 128 DSQ (Double Square QAM) constellation modulation and its associated labeling. A novel means is introduced by which a constellation may be arranged and mapping in its symbols may be determined to provide for improved performance. One application area in which this may be employed is transmission over twisted pair (typically copper) cabling existent within data centers of various networks. The operation of the IEEE 802.3 Ethernet local area networks currently being used (as well as those currently under development) would benefit greatly by employing the various principles presented herein. When this novel approach of an LDPC coded 128 DSQ constellation modulation combined with TH (Tomlinson-Harashima) preceding is employed within a communication device at a transmitter end of a communication channel (i.e., in a transmitter and/or a transceiver), the overall operation of a communication system may improve significantly when compared to prior techniques.
摘要:
In a communication system, Huffman coding techniques are used to obtain shaping gains for an improvement in data transmission rates. More particularly, a novel method of Huffman shaping is described that achieves a shaping gain of greater than 1 dB. The shaping gain results in a higher data rate transmission in a communication system where transmitted power is constrained.
摘要:
A method and apparatus is disclosed to map a sequence of data to Quadrature Amplitude Modulation (QAM) constellation symbols. The method and apparatus encodes only a portion of the sequence of data and leaves a remaining portion of the sequence of data unencoded. The encoded portion of the sequence of data and the remaining unencoded portion of the sequence of data are then mapped into modulation symbols of the QAM constellation. The encoded portion of the sequence of data selects subsets of the QAM constellation, and the remaining unencoded portion of the sequence of data determines a specific modulation symbol within each subset of the QAM constellation.
摘要:
A two-stage block synchronization and scrambling module includes a synchronization PRNG module, a scramble PRNG module, a summing module, and a storage module. The synchronization PRNG module is clocked once per N+1 bit PCS frame (N arbitrary) to produce a synchronization bit and a pseudo-random starting state for the scramble PRNG. The scramble PRNG module is clocked N times per PCS frame to produce a cipher stream starting with a pseudo-random state from the synchronization PRNG. The summing module is operably coupled to sum the cipher stream and a PCS frame payload to produce scrambled payload. The storage module is operably coupled to store the scrambled payload with the synchronization bit. Synchronization bits from successive frames are a running bit-serial representation of the synchronization PRNG state and are used by the receiver to synchronize with the transmit scrambler.