Abstract:
Techniques for multiplexing and transmitting multiple data streams are described. Transmission of the multiple data streams occurs in “super-frames”. Each super-frame has a predetermined time duration and is further divided into multiple (e.g., four) frames. Each data block for each data stream is outer encoded to generate a corresponding code block. Each code block is partitioned into multiple subblocks, and each data packet in each code block is inner encoded and modulated to generate modulation symbols for the packet. The multiple subblocks for each code block are transmitted in the multiple frames of the same super-frame, one subblock per frame. Each data stream is allocated a number of transmission units in each super-frame and is assigned specific transmission units to achieve efficient packing. A wireless device can select and receive individual data streams.
Abstract:
Techniques for mitigating interference on control channels in a wireless communication network are described. In an aspect, high interference on radio resources used for a control channel may be mitigated by sending a request to reduce interference to one or more interfering stations. Each interfering station may reduce its transmit power on the radio resources, which may then allow the control channel to observe less interference. In one design, a user equipment (UE) may detect high interference on radio resources used for a control channel by a desired base station. The UE may send a request to reduce interference on the radio resources to an interfering base station, which may reduce its transmit power on the radio resources. The UE may receive the control channel on the radio resources from the desired base station and may observe less interference from the interfering base station.
Abstract:
Techniques for performing power control and handoff are described. In an aspect, power control (PC) is supported with multiple PC modes such as an up-down PC mode and an erasure-based PC mode. One PC mode may be selected for use. Signaling may be sent to indicate the selected PC mode. If the up-down PC mode is selected, then a base station estimates the received signal quality for a terminal and sends PC commands to direct the terminal to adjust its transmit power. If the erasure-based PC mode is selected, then the base station sends erasure indications that indicate whether codewords received from the terminal are erased or non-erased. For both PC modes, the terminal adjusts its transmit power based on the power control feedback (e.g., PC commands and/or erasure indications) to achieve a target level of performance (e.g., a target erasure rate for the codewords). The erasure indications may also be used for handoff.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, to a base station, for a master cell group and a secondary cell group used for a dual connectivity mode of the UE, information indicating physical downlink control channel (PDCCH) monitoring capability values for one or more of span-based monitoring or a combination of slot-based monitoring and span-based monitoring. The UE may receive, from the base station, PDCCH monitoring configuration values for the MCG and the SCG based at least in part on the PDCCH monitoring capability values. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, a configuration of a minimum slot offset based at least in part on a determination of a minimum wake-up signal (WUS) gap capability associated with the UE, wherein the minimum WUS gap capability corresponds to a capability of the UE to support a WUS gap having a minimum gap size, wherein the minimum slot offset indicates a minimum time period between a physical downlink control channel (PDCCH) occasion and a physical downlink shared channel (PDSCH) occasion scheduled by the PDCCH; and monitor the PDCCH occasion for a downlink grant based at least in part on the configuration. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may configure a bandwidth part (BWP) switching configuration of a user equipment in connection with a dual active protocol stack (DAPS) handover based at least in part on a BWP switching rule; and perform the DAPS handover. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communication are described that provide for reduced timing between certain downlink communications and responsive uplink communications relative to certain legacy systems (e.g., legacy LTE systems). A user equipment (UE) or base station may be capable of operating using two or more timing configurations that each include an associated time period between receipt of a downlink communication (e.g., a grant of uplink resources or shared channel data) and a responsive uplink communication (e.g., an uplink transmission using the granted uplink resources or feedback of successful reception of the shared channel data). In cases where a UE or base station are capable of two or more timing configurations, a timing configuration for a transmission may be determined and the responsive uplink communication transmitted according to the determined timing configuration.
Abstract:
Aspects described herein relate to configuring devices with multiple uplink grants, where the devices may be able to determine whether to interrupt communications of one uplink grant for communications of another uplink grant.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may perform, to a first base station and via a first radio frequency (RF) chain associated with a first subscription, a first uplink transmission based at least in part on one or more of an uplink carrier aggregation capability of the UE or an uplink multiple-input multiple-output (MIMO) capability of the UE. The UE may perform, to the first base station or to a second base station, and via a second RF chain associated with a second subscription and configured to operate simultaneously with the first RF chain, a second uplink transmission based at least in part on one or more of the uplink carrier aggregation capability of the UE or the uplink MIMO capability of the UE. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for antenna selection at a user equipment (UE). The UE may have a set of available antennas for uplink and downlink communications, and may select a first subset of antennas for uplink communications and a second subset of antennas for downlink communications. The first subset of antennas may be based on one or more uplink metrics, and the second subset of antennas may be based on the first subset of antennas and one or more downlink channel metrics, traffic amounts, or any combinations thereof.