Abstract:
A power system utilizing a method and apparatus to cost-effectively and efficiently supply power to an electrical system requiring a switchable main power source and a continuous auxiliary power source. Specifically, the power system utilizes an improved power converter having a main output circuit and an auxiliary output circuit coupled to a common input circuit. Primary switching circuitry in the input circuit, secondary switching circuitry in the main output circuit, and capacitance in the auxiliary output circuit allow for the systematic control of the main output from the power converter to the electrical system. In particular, the main output circuit can be switched on and off without interrupting the auxiliary output circuits supply of electrical power to the electrical system. Moreover, switching at a zero current state allows for the use of more cost-effective and efficient circuitry. The power system method and apparatus of the present invention produces functionality and operating characteristics similar to using two separate and independent power systems to supply an electrical system but with increased efficiency as well as reduced cost and complexity.
Abstract:
A filter for an inrush relay, the relay having a relay coil having first and second leads includes a common-mode inductor connected to the relay coil leads across the relay coil. A first capacitor is connected to the first relay coil lead and a chassis ground potential. A second capacitor is connected to the second relay coil lead and the chassis ground potential. A third capacitor is connected to the relay coil leads across the relay coil. A first resistor is connected to the first relay lead, and a second resistor is connected to the second relay coil lead. The inductor and first and second capacitors form a high frequency common-mode filter. The third capacitor and first and second resistors form a high frequency differential mode filter.
Abstract:
A circuit for, and method of, reducing a preload current required to maintain a duty cycle of an asymmetrical DC/DC converter and a DC/DC converter incorporating the circuit or the method. In one embodiment, the circuit includes an auxiliary inductor, coupled in series with an output capacitor of the converter in an output current doubler thereof, that reduces ripple current in the output current doubler and thereby maintains the duty cycle.
Abstract:
Various systems and methods for providing soft-start and soft-stop to an asymmetrical half-bridge converter and a power supply employing such systems or methods. The power supply includes a power train including an asymmetrical half-bridge converter having an energy storage device coupled across a complementary switch thereof. In one embodiment, a conductive path is coupled across the energy storage device to substantially discharge the energy storage device and thereby reduce current stress in the complementary switch when the converter turns on. In another embodiment, a controller, coupled to the complementary switch, provides a drive waveform to drive the complementary switch. The controller increases a duty cycle of the drive waveform as the converter turns off.
Abstract:
For use with a buck-based converter having a rectifier that receives current from a secondary side of a isolation transformer, an active clamp and a method of operating the buck-based converter to manage reverse recovery energy therein. In one embodiment, the active clamp includes: (1) an auxiliary transformer coupled across the isolation transformer and (2) an auxiliary switch, interposed between the auxiliary transformer and the rectifier, that: (2a) closes as a function of an output voltage of the rectifier to cause the auxiliary transformer to receive reverse recovery energy from the rectifier and deliver the reverse recovery energy to a primary side of the isolation transformer and (2b) opens to limit a magnetic flux of a core of said auxiliary transformer.
Abstract:
An AC-AC ballast system for a discharge lamp (e.g., a fluorescent lamp), which includes a PFC converter which incorporates an isolation transformer, and a DC-AC inverter provided on the secondary side of the isolation transformer. Because the AC line input is isolated from the lamp load by the transformer in the PFC converter, the switching frequency of the PFC converter can be advantageously significantly higher than the lamp current frequency (and the switching frequency of the DC-AC inverter), to thereby enable a significant reduction in the size and weight of the ballast system, without an increase in the emission of EMI radiation from the lamp. In this regard, the ballast system of the present invention can be thought of as a two-frequency ballast system having an isolated PFC converter.
Abstract:
For use with a buck-based converter having an isolation transformer, a snubber circuit and a method of damping a transient in the power rectifying diode due to its reverse recovery. In one embodiment, the snubber circuit includes: (1) a capacitor, coupled to a power rectifying diode in the buck-based converter, that receives energy from the power rectifying diode during a reverse recovery period thereof and (2) a flyback converter, coupled to the capacitor, that receives the energy from the capacitor and delivers the energy to a voltage source on the primary side of the isolation transformer.
Abstract:
A static random access memory (SRAM) bit cell and a related SRAM array are provided. In one aspect, an SRAM cell is configured to perform an XNOR function on a first input value and a second input value. In another aspect, a number of the SRAM cells can be employed to form an SRAM array for supporting deep neural network and machine learning applications. The SRAM cell is coupled to a word line(s) and an inverted word line(s) that collectively define the first input value. The SRAM cell causes a voltage and/or current difference between a bit line(s) and a complementary bit line(s) coupled to the SRAM cell. By customizing the SRAM cell to enable the XNOR function and forming a binary neural network based on the SRAM array, it is possible to effectively implement computing-in-memory (CIM) for deep neural network and machine learning applications.
Abstract:
The present invention relates to compositions and methods for treating, characterizing, and diagnosing cancer. In particular, the present invention provides gene expression profiles associated with solid tumor stem cells, as well as novel stem cell cancer markers useful for the diagnosis, characterization, and treatment of solid tumor stem cells.
Abstract:
Embodiments of the present disclosure may include methods, systems, and machine readable and executable instructions and/or logic. An example method for creating a handwritten character font library can include receiving a set of standard characters to a computing device, and deriving a group of character components from the initial set of characters. A subset of characters is selected from the set of standard characters, the subset collectively including substantially all the group of character components. Handwritten characters corresponding to the subset of characters are received to the computing device, and handwritten character components are extracted from the hand written characters corresponding to the group of character components. A set of handwritten characters is then constructed from the received handwritten characters and/or the handwritten character components.