Abstract:
A well may be formed for access to an optical waveguide core by a process that results in an L-shaped well. The L-shaped well may then be filled with a polymer. By controlling the size of each portion of well, the occurrence of bubbles within the well and cuts to the core may be reduced.
Abstract:
Optical components may be precisely positioned in three dimensions with respect to one another. A bonder which has the ability to precisely position the components in two dimensions can be utilized. The components may be equipped with contacts at different heights so that as the components come together in a third dimension, their relative positions can be sensed. This information may be fed back to the bonder to control the precise alignment in the third dimension.
Abstract:
Techniques and structures for providing flexibility of a micromachined transducer array. In an embodiment, a transducer array includes a plurality of transducer elements each comprising a piezoelectric element and one or more electrodes disposed in or on a support layer. The support layer is bonded to a flexible layer including a polymer material, wherein flexibility of the transducer array results in part from a total thickness of a flexible layer. In another embodiment, flexibility of the transducer array results in part from one or more flexural structures formed therein.
Abstract:
A method and system provide a magnetic transducer having an air-bearing surface (ABS). The magnetic transducer includes a write pole and a coil. The write pole has a pole tip and a yoke. The coil energizes the write pole and includes a plurality of turns. A turn of the plurality of turns has a first portion and a second portion. The first portion has a first length in a stripe height direction substantially perpendicular to the ABS. The second portion has a second length in the stripe height direction. The second length is greater than the first length and extends at least to at least one adjacent turn.
Abstract:
A magnetic recording transducer is provided. The magnetic recording transducer comprises a main pole including a nose portion, the nose portion terminating at an air-bearing surface (ABS). The magnetic recording transducer further comprises at least one coil having a coil front distal from the ABS, and at least one side shield. The at least one side shield extends from at the ABS to not further than the coil front.
Abstract:
A method and system for providing an EAMR transducer is described. The EAMR transducer is coupled with a laser for providing energy and has an ABS that resides near a media during use. The EAMR transducer includes a write pole, coil(s) that energize the pole, a near field transducer (NFT) proximate to the ABS, a waveguide, and a reflector. The write pole has a back gap region and writes to a region of the media. The NFT focuses the energy onto the media. The waveguide directs the energy from the laser toward the NFT at an incident angle with respect to the ABS. A first portion of the energy reflects off of the ABS at a reflected angle. The reflector receives the first portion of the energy from the ABS and reflects a second portion of the energy toward the ABS. The NFT resides between the waveguide and the reflector.
Abstract:
A method and system for fabricating an energy assisted magnetic recording (EAMR) transducer is described. The EAMR transducer has an air-bearing surface (ABS) and a waveguide. The method includes providing a planarized near field transducer (NFT) for the waveguide and forming a sloped surface on the planarized NFT. The sloped surface has a front edge separated from the ABS by a distance. The method and system also include providing a write pole on the sloped surface.
Abstract:
A method for fabricating a magnetic transducer having an air-bearing surface (ABS) is provided. The method comprises providing an underlayer, and providing a main pole residing on the underlayer and having a front and a rear. The step of providing a main pole further includes providing a first portion having a first magnetic moment, the first portion having a front face at the ABS and terminating between the ABS and the rear of the main pole, and providing a second portion having a second magnetic moment. A part of the second portion resides on the first portion, and another part of the second portion resides between the first portion of the main pole and the rear of the main pole. The first magnetic moment is less than the second magnetic moment.
Abstract:
A method provides a magnetic transducer that includes an underlayer and a nonmagnetic layer on the underlayer. The method includes providing a plurality of trenches in the nonmagnetic layer. A first trench of corresponds to a main pole, while at least one side trench corresponds to at least one side shield. The method also includes providing mask covering the side trench(es) and providing the main pole. At least a portion of the main pole resides in the first trench. The method also includes removing at least a portion of the nonmagnetic layer residing between the side trench(es) and the main pole. The method also includes providing at least one side shield. The shield(s) extend from at least an air-bearing surface location to not further than a coil front location.
Abstract:
Optical components may be precisely positioned in three dimensions with respect to one another. A bonder which has the ability to precisely position the components in two dimensions can be utilized. The components may be equipped with contacts at different heights so that as the components come together in a third dimension, their relative positions can be sensed. This information may be fed back to the bonder to control the precise alignment in the third dimension.