Abstract:
A metal-air battery cell includes: a negative electrode metal layer; a positive electrode layer configured to use oxygen as an active material for which a reduction/oxidation reaction of oxygen introduced thereto occurs; a negative electrode electrolyte film disposed between the negative electrode metal layer and the positive electrode layer in a thickness direction; and a channel layer disposed on the positive electrode layer and comprising a plurality of channel structures, the channel structures each elongated to extend in an extension direction crossing the thickness direction.
Abstract:
A metal-air battery includes a monolithic body including at least one channel; and at least one cell disposed between the channel and the body, the cell including a negative electrode including a metal, a positive electrode disposed apart from the negative electrode and configured to use oxygen as an active material, and an electrolyte disposed between the negative electrode and the positive electrode.
Abstract:
A metal metal-air battery includes: an anode layer including a metal, a cathode layer spaced apart from the anode layer and including a hybrid conductive material having both electron conductivity and ionic conductivity; and a separator disposed between the anode layer and the cathode layer, wherein the hybrid conductive material includes a channel for metal ion transfer from the anode layer and a channel for electron transfer between the cathode and the anode.
Abstract:
A cathode configured to use oxygen as a cathode active material, the cathode comprising a lithium-containing metal oxide comprising at least one of:
a spinel compound represented by Formula 1
Li1±xM2±yO4−δ Formula 1
wherein, in Formula 1, M is at least one metal element belonging to Group 2 to Group 16 of the periodic table of the elements, 0
Abstract:
A composite electrolyte includes: a positively charged particle, a particle that is positively charged by having a coordinate bond with a cation, or a combination thereof; and a lithium salt.
Abstract:
A composite electrolyte including a lithium salt; a solid electrolyte wherein the solid electrolyte is a sulfide solid electrolyte, an oxide solid electrolyte, or a combination thereof; and an ionic liquid, wherein a mixture of the ionic liquid and the lithium salt has a dielectric constant of from about 4 to about 12, and an amount of halogen ions eluted from the composite electrolyte after immersion of the solid electrolyte in the ionic liquid for 24 hours is less than about 25 parts per million by weight, based on the total weight of the composite electrolyte, as measured by ion chromatography.
Abstract:
A metal air battery includes a first battery cell module which generates electricity by oxidation of a metal and reduction of oxygen, a second battery cell module in fluid-communication with the first battery cell module and which generates electricity by oxidation of a metal and reduction of oxygen, and an air purifier in fluid-communication with the second battery cell module, where the air purifier purifies external air to supply first purified air to the second battery cell module, and the second battery cell module supplies second purified air generated by the oxidation of the metal and the reduction of the oxygen to the first battery cell module.
Abstract:
A mixed conductor represented by Formula 1: A4+xM5-yM′yO12-δ, Formula 1 wherein, in Formula 1, A is a monovalent cation, M is at least one of a divalent cation, a trivalent cation, or a tetravalent cation, M′ is at least one of a monovalent cation, a divalent cation, a trivalent cation, a tetravalent cation, a pentavalent cation, or a hexavalent cation, M and M′ are different from each other, and 0.3≤x
Abstract:
A metal-air battery including an anode layer; a solid electrolyte layer; and a cathode layer directly contacting the solid electrolyte layer. The solid electrolyte layer and the cathode layer are a single unitary and indivisible body with no physical interlayer boundary between the solid electrolyte layer and the cathode layer. A portion of the cathode layer may be within the solid electrolyte layer. The cathode layer may protrude from the solid electrolyte layer. The method of manufacturing a metal-air battery may include forming a solid electrolyte layer on an anode layer and chemically reducing solid electrolyte in a part of the solid electrolyte layer.
Abstract:
Provided is a metal-air battery including a cathode having a space which may be filled with a metal oxide formed during a discharge of the metal-air battery and thus having improved energy density and lifespan. The cathode for the metal-air battery includes a plurality of cathode materials, a plurality of electrolyte films disposed on surfaces of the plurality of cathode materials, and a plurality of spaces which are not occupied by the plurality of cathode materials and the plurality of electrolyte films. A volume of the plurality of spaces may be greater than or equal to a maximum space of a metal oxide formed during a discharge of the metal-air battery.