Abstract:
Provided is a solid-state imaging device including a lamination-type backside illumination CMOS (Complementary Metal Oxide Semiconductor) image sensor having a global shutter function. The solid-state imaging device includes a separation film including one of a light blocking film and a light absorbing film between a memory and a photo diode.
Abstract:
Disclosed herein is an image processing apparatus including: a storage section configured to store a correction matrix correcting crosstalk generated by a light or electron leak from an adjacent pixel existing among a plurality of pixels for receiving light in an imaging device; and a processing section configured to carry out processing to apply the correction matrix stored in the storage section to an image signal generated by the imaging device for each of the pixels.
Abstract:
Solid-state imaging devices, methods of producing a solid-state imaging device, and electronic apparatuses are provided. More particularly, a solid-state image device includes a silicon substrate, and at least a first photodiode formed in the silicon substrate. The device also includes an epitaxial layer with a first surface adjacent a surface of the silicon substrate, and a transfer transistor with a gate electrode that extends from the at least a first photodiode to a second surface of the epitaxial layer opposite the first surface. In further embodiments, a solid-state imaging device with a plurality of pixels formed in a second semiconductor substrate wherein the pixels are symmetrical with respect to a center point is provided. A floating diffusion is formed in an epitaxial layer, and a plurality of transfer gate electrodes that are each electrically connected to the floating diffusion by one of the transfer gate electrodes is provided.
Abstract:
The present disclosure relates to a solid-state imaging device and an electronic device for suppressing deterioration of pixel characteristics while guaranteeing the operating range of VSLs. A solid-state imaging device according to a first aspect of this disclosure has multiple pixel sharing units each including multiple photoelectric conversion sections each configured to correspond to a pixel, an accumulation section configured to be shared by the plurality of photoelectric conversion sections and to accumulate charges generated thereby, and multiple transistors configured to control reading of the charges accumulated in the accumulation section. The plurality of transistors in each pixel sharing unit are arranged symmetrically. The plurality of transistors include a transistor that functions as a switch to change conversion efficiency. The present disclosure may be applied to back-illuminated CMOS image sensors, for example.
Abstract:
Provided is a solid-state imaging device including a lamination-type backside illumination CMOS (Complementary Metal Oxide Semiconductor) image sensor having a global shutter function. The solid-state imaging device includes a separation film including one of a light blocking film and a light absorbing film between a memory and a photo diode.
Abstract:
The present disclosure relates to a solid-state imaging device and an electronic device for suppressing deterioration of pixel characteristics while guaranteeing the operating range of VSLs. A solid-state imaging device according to a first aspect of this disclosure has multiple pixel sharing units each including multiple photoelectric conversion sections each configured to correspond to a pixel, an accumulation section configured to be shared by the plurality of photoelectric conversion sections and to accumulate charges generated thereby, and multiple transistors configured to control reading of the charges accumulated in the accumulation section. The plurality of transistors in each pixel sharing unit are arranged symmetrically. The plurality of transistors include a transistor that functions as a switch to change conversion efficiency. The present disclosure may be applied to back-illuminated CMOS image sensors, for example.
Abstract:
The present technology relates to a solid-state image sensor, an imaging device, and electronic equipment configured such that an FD is shared by a plurality of pixels to further miniaturize the pixels at low cost without lowering of sensitivity and a conversion efficiency. In a configuration in which a plurality of pixels are arranged with respect to at least either of one of the OCCFs or one of the OCLs, a floating diffusion (FD) is shared by a sharing unit including a plurality of pixels, the plurality of pixels including pixels of at least either of different OCCFs or different OCLs. The present technology is applicable to a CMOS image sensor.
Abstract:
The present technology relates to a solid-state image sensor, an imaging device, and electronic equipment configured such that an FD is shared by a plurality of pixels to further miniaturize the pixels at low cost without lowering of sensitivity and a conversion efficiency.In a configuration in which a plurality of pixels are arranged with respect to at least either of one of the OCCFs or one of the OCLs, a floating diffusion (FD) is shared by a sharing unit including a plurality of pixels, the plurality of pixels including pixels of at least either of different OCCFs or different OCLs. The present technology is applicable to a CMOS image sensor.
Abstract:
The present technology relates to a solid-state image sensor, an imaging device, and electronic equipment configured such that an FD is shared by a plurality of pixels to further miniaturize the pixels at low cost without lowering of sensitivity and a conversion efficiency.In a configuration in which a plurality of pixels are arranged with respect to at least either of one of the OCCFs or one of the OCLs, a floating diffusion (FD) is shared by a sharing unit including a plurality of pixels, the plurality of pixels including pixels of at least either of different OCCFs or different OCLs. The present technology is applicable to a CMOS image sensor.
Abstract:
The present technology relates to a solid-state image sensor, an imaging device, and electronic equipment configured such that an FD is shared by a plurality of pixels to further miniaturize the pixels at low cost without lowering of sensitivity and a conversion efficiency.In a configuration in which a plurality of pixels are arranged with respect to at least either of one of the OCCFs or one of the OCLs, a floating diffusion (FD) is shared by a sharing unit including a plurality of pixels, the plurality of pixels including pixels of at least either of different OCCFs or different OCLs. The present technology is applicable to a CMOS image sensor.