Abstract:
A base stations (BS) are configured to perform a coordinated transmission to at least one user equipment (UE). The BS includes a plurality of antenna configured to communicate with the UE. The BS also includes processing circuitry coupled to the plurality of antennas and configured to transmit physical downlink control channel (PDCCH) to the at least one user equipment. The UE includes a plurality of antennas configured to communicate with the BS. The UE also includes a processing circuitry coupled to the plurality of antennas and configured to receive PDCCH from the BS. The PDCCH is included in one or more transmit (Tx) beams. A Tx beam is defined by the cell specific reference signal (CRS) transmitted through the Tx beam. A Tx beam is configured to carry a beam identifier, and the PDCCH is configured to include resource allocation information for the user equipment.
Abstract:
A mobile station is configured to scan cells in a wireless network. The mobile station includes at least one antenna configured to transmit and receive wireless signals. The mobile station also includes a processor coupled to the at least one antenna, the processor configured to scan for one or more neighboring base station cells in a same frequency band as a serving base station cell using one or more receive beams. The one or more receive beams used for scanning are different than receive beams used for data communication with the serving base station cell.
Abstract:
Beam-steered millimeter wave signals transmitted in each of n sector slices include a sequence of primary synchronization (PSCH) symbols within predetermined symbol positions in at least one slot of a subframe. The symbols in consecutive symbol positions are each transmitted on a different one of the n slices, with the first symbol repeated on the same slice at the end. The sequence order rotates cyclically in each subframe so that two PSCH symbols are transmitted on one slice in a single subframe every nth subframe. Secondary synchronization (SSCH) and Broadcast Channel (BCH) symbols are transmitted in a predetermined pattern following the sequence of PSCH symbols. By transmitting consecutive PSCH symbols on different slices and repeating the first symbol, the mobile station can detect the best slice and beam by switching receive beams every subframe instead of every slot, relaxing time constraints on AGC adjustment while avoiding the start-at-the-edge problem.
Abstract:
An electronic device according to various embodiments of the present invention may comprise: a body which is made of a conductive material and has both ends curvedly extending to be adjacent to each other so as to have a loop shape; a communication module arranged on the body; a feeding line which extends from the communication module and is arranged to cross a gap between both ends of the body; and at least one connection terminal for connecting the feeding line to the body, wherein the body can receive a feeding signal from the communication module through the feeding line, and transmit/receive a wireless signal. The above-mentioned electronic device can be implemented variously according to embodiments.
Abstract:
A network node in a wireless network performs a method for enhancing reliability in wireless communication. The method includes determining, at a first network node, that a current link with a second network node is broken. The method also includes attempting, at the first network node, to recover the current link. The method further includes, upon a determination that the current link is not recoverable, establishing, at the first network node, a new link with the second network node according to one of a plurality of switching rules, the switching rules ordered according to a priority among the switching rules.
Abstract:
A method and apparatus are provided for allocating code resources to ACK/NACK channel indexes, when UEs need ACK/NACK transmission in a wireless communication system in which a predetermined number of orthogonal cover Walsh codes is selected from among available orthogonal cover Walsh codes, at least one subset is formed, having the selected orthogonal cover Walsh codes arranged in an ascending order of cross interference, subsets are selected for use in first and second slots of a subframe, and the orthogonal cover Walsh codes of the subset selected for each slot and ZC sequence cyclic shift values are allocated to the ACK/NACK channel indexes.
Abstract:
An interleaving method in a mobile communication system is provided. The interleaving method includes encoding a plurality of bits to output encoded bits in a sequence, interleaving the encoded bits based on a modulation order to generate interleaved encoded bits comprising consecutive bits having a size based on the modulation order, the consecutive bits corresponding to consecutive bits of the encoded bits, scrambling the interleaved encoded bits with a scrambling code to generate scrambled bits, and modulating the scrambled bits based on the modulation order to output at least one symbol.
Abstract:
A receiver in a communication system is provided that includes a synchronization module and a channel estimator. The synchronization module is configured to identify an end of a cyclic prefix (CP) in a received signal using slope detection by monitoring a detection metric threshold in the received signal. The channel estimator is configured to estimate a complex noise variance using guard band subcarriers.
Abstract:
Methods and apparatus for transmitting power setting information in a downlink Physical Downlink Shared Channel (PDSCH) in a communication system. In this communication system, a plurality of methods for calculating traffic-to-pilot ratios (T2P) are established. In addition, a mapping scheme between a plurality of overhead signals and a plurality of reference signal (RS) overhead ratios, ηRS, and the plurality of T2P calculation methods is established. A user-specific T2P ratio PB,k/PRS for certain OFDM symbols, a RS overhead ratio ηRS and a calculation method selected from the plurality of T2P calculation methods are assigned to a wireless terminal. Then, an overhead signal corresponding to both of the assigned RS overhead ratio ηRS and the assigned T2P calculation method is selected in accordance with the mapping scheme and is transmitted to the wireless terminal. In addition, the user-specific traffic-to-pilot ratio PB,k/PRS is transmitted to the wireless terminal. The wireless terminal may calculate the traffic-to-pilot ratios across different transmission antennas and different OFDM symbols in dependence upon the received traffic-to-pilot ratio PB,k/PRS, and the RS overhead ratio and the T2P calculation method indicated by the RS overhead signal.
Abstract:
A method and apparatus for channel interleaving in a wireless communication system. In one aspect of the present invention, the data resource elements are assigned to multiple code blocks, and the numbers of data resource elements assigned to each code block are substantially equal. In another aspect of the present invention, a time-domain-multiplexing-first (TDM-first) approach and a frequency-domain-multiplexing-first (FDM-first) approach are proposed. In the TDM-first approach, at least one of a plurality of code blocks are assigned with a number of consecutive data carrying OFDM symbols. In the FDM-first approach, at least one of the plurality of code blocks are assigned with all of the data carrying OFDM symbols. Either one of the TDM first approach and the FDM-first approach may be selected in dependence upon the number of the code blocks, or the transport block size, or the data rate.