Abstract:
A novel process for the preparation of a supported transition metal catalyst system said method comprises the steps of: (i) mixing together in a suitable solvent (a) an organometallic compound, and (b) an ionic activator comprising a cation and an anion, (ii) addition of the mixture from step (i) to a support material, and (iii) addition of a transition metal compound in a suitable solvent, characterised in that the molar ratio of organometallic compound (a) to ionic activator (b) in step (i) is in the range 0.1 to 2.0. By use of the reduced molar ratio of the organometallic compound to the ionic activator in step (i) better reproducibilty of the catalyst may be achieved as well as higher activities. In addition polymer properties may be improved for example higher melt strength resulting in better product performance. The preferred transition metal compounds are metallocenes.
Abstract:
The present invention relates to transition metal complex compounds, to polymerization catalysts based thereon and to their use in the polymerization and copolymerization of olefins.
Abstract:
A process is described for producing dioxolane from crude glycerol obtained from raw materials such as the crude glycerol obtained during production of biodiesel or glycerol obtained during conversion of fats or oils. Further, the described method can dissolve the glycerol in an organic solvent and form an insoluble phase including salts included in the crude glycerol, and then react the glycerol obtained with an aldehyde or a ketone.
Abstract:
A process is described for purifying crude glycerol obtained from raw materials such as glycerol obtained during manufacture of biodiesel or glycerol obtained during conversions of fats or oils. Further described, is how the process dissolves glycerol in an organic solvent and forms an insoluble phase comprising the salts of the crude glycerol.
Abstract:
A process for preparing dicarboxylic acids is described. More particularly a process is described for preparing adipic acid (1,6-hexanedioic acid), by the action of nitric acid, starting from cyclic ketones or alcohols which are the corresponding compounds from the standpoint of the number of carbon atoms, in the presence of one or more oxides of nitrogen at a molar concentration in the reaction mixture of greater than 2.5 mmol per kg of reaction mixture.
Abstract:
Organophosphorus compounds, catalytic systems comprising a metallic element forming a complex with the organophosphorus compounds and methods of hydrocyanation and of hydroformylation employed in the presence of the catalytic systems are described.
Abstract:
A method for producing compounds including at least one nitrile function by the hydrocyanation of a compound including at least one non-conjugated unsaturation is described. A method for producing compounds including at least one nitrile function by the hydrocyanation of an organic compound including at least one non-conjugated unsaturation including 2 to 20 carbon atoms by reacting with hydrogen cyanide in the presence of a catalytic system including at least one nickel complex in a zero oxidation state with at least one organophosphorus ligand selected from the group including organophosphites, organophosphonites, organophosphinites and organosphosphines and a co-catalyst such as a Lewis acid consisting of a mixture of Lewis acids is also described.
Abstract:
A method for the preparation of copolymers of ethylene and α-olefins having a fraction (%) of the molecular weight component of >1,000,000 of less than 6% comprises polymerising ethylene and an α-olefin in the presence of a supported polymerisation catalyst system comprising (a) a transition metal compound (b) a porous support material, and (c) an activator characterized in that the support material has been (i) dried at a temperature in the range 0° C. to 195° C. in an inert atmosphere, and (ii) treated with an organometallic compound. The resultant supported catalyst systems show improved productivity and allow for control of the resultant polymer properties. Particularly preferred supported catalyst systems are those comprising metallocene complexes.
Abstract:
A process for the polymerisation of olefin monomers selected from (a) ethylene, (b) propylene (c) mixtures of ethylene and propylene and (d) mixtures of (a), (b) or (c) with one or more other alpha-olefins is performed in a polymerisation reactor in the presence of a supported polymerisation catalyst characterised in that prior to injection into the reactor said supported polymerisation catalyst in the form of a powder is contacted with an inert hydrocarbon liquid in a quantity sufficient to maintain said catalyst in powder form. The preferred inert hydrocarbon liquid is hexane. The supported polymerisation catalyst is preferably a supported metallocene catalyst. According to the process of the prescrit invention the level of fines associated with the polymer products is reduced in particular the level of fines having a diameter
Abstract:
A method for the preparation of copolymers of ethylene and α-olefins having a fraction (%) of the molecular weight component of >1,000,000 of less than 6% comprises polymerising ethylene and an α-olefin in the presence of a supported polymerisation catalyst system comprising (a) a transition metal compound (b) a porous support material, and (c) an activator characterized in that the support material has been (i) dried at a temperature in the range 0° C. to 195° C. in an inert atmosphere, and (ii) treated with an organometallic compound. The resultant supported catalyst systems show improved productivity and allow for control of the resultant polymer properties. Particularly preferred supported catalyst systems are those comprising metallocene complexes.