摘要:
The present invention proposes an infrastructure to enable seamless mobility for wireless metropolitan area networks (WMANs) and to provide for management of spectrum and network resources. An WMAN reference model is introduced where the radio resource management (RRM) and handover (HO) sub-layer is introduced into the protocol stack. The WMAN management plane is responsible for the RRM and HO management. Several physical and logical network architecture options for WMAN management are proposed.
摘要:
A method for managing quality of service (QoS) in a wireless local area network begins by receiving a traffic flow. The traffic flow is mapped to a traffic class (TC), based on QoS requirements of the traffic flow. A transmission budget of an access class (AC) is calculated, each AC including at least one TC. A determination is made whether the traffic flow can be admitted, by calculating whether the transmission budget can support the traffic flow. If the traffic flow is admitted, the parameters of the TC are adjusted and collisions in the TC between existing traffic flows and the newly admitted traffic flow are managed.
摘要:
The present invention is directed to methods and wireless communication devices that are configured to enhance communication capacity in a wireless network. In one aspect of the invention various scheduling processes and schedulers for the transmissions of data packets are disclosed. In another aspect of the invention, the selection of appropriate transmission rates to advertise by a common unit which provides wireless service to different types of wireless transmit receive units (WTRUs) is addressed.
摘要:
The present invention is related to a method and apparatus for facilitating lossless handover in a wireless communication system comprising at least one wireless transmit/receive unit (WTRU), a source evolved Node B (eNB), a target eNB, and a mobility management entity/user plane entity (MME/UPE) where the WTRU is in wireless communication with the source eNB. The source eNB determines to handover the WTRU to the target eNB, requests status reports from the WTRU, and requests handover to the target eNB. The handover request includes context information relating to the WTRU which is sent to the target eNB. The target eNB configures resources for the WTRU and transmits a handover response signal to the source eNB. The source eNB commands the WTRU to perform a handover to the target eNB and forwards data to the target eNB. The WTRU performs the handover to the target eNB.
摘要:
A method and system for call setup in an evolved third generation (3G) radio access network are disclosed. A wireless transmit/receive unit (WTRU) sends its identity to a core network (CN) for call setup when the WTRU is in an RRC_disconnected state. The CN verifies the identity and sends an authentication vector to the WTRU. The WTRU sends a service access request message including an authentication response to the CN via a Node-B. The Node-B performs an admission control. The CN attaches the WTRU if the authentication response is same to an expected response. The Node-B then allocates radio resources to the WTRU. The Node-Bs may be directly connected, or may be connected to a control plane server which performs admission control. When the WTRU is transitioning from an RRC_idle state to an RRC_connected state, the WTRU may or may not need to re-authenticate again.
摘要:
A method and apparatus for implementing path-based traffic stream (TS) admission control in a wireless mesh network having a distributed and/or centralized admission control architecture is disclosed. When the wireless mesh utilizes distributed admission control architecture, a source mesh point (S.MP) transmits a request for TS admission requiring certain resources/quality of service (QoS). The request propagates through the wireless mesh network until the destination mesh point (D.MP) is reached and an admitted path is determined. If an intermediate mesh point (MP) is unable to meet the requested resources/QoS for the TS, the S.MP is notified. When the wireless mesh network utilizes centralized admission control architecture, a S.MP requests a route to the D.MP from a central controller. The central controller maintains a status of MPs in the wireless mesh network, and selects a best route to handle the TS to satisfy the requested resources/QoS.
摘要:
The present invention proposes an infrastructure to enable seamless mobility for wireless metropolitan area networks (WMANs) and to provide for management of spectrum and network resources. An WMAN reference model is introduced where the radio resource management (RRM) and handover (HO) sub-layer is introduced into the protocol stack. The WMAN management plane is responsible for the RRM and HO management. Several physical and logical network architecture options for WMAN management are proposed.
摘要:
A radio resource control unit which monitors air interface resources, includes an air interface measurement unit for obtaining air interface measurements; a storage unit which stores air interface measurements and a corresponding timestamp; and a processing unit, for processing the air interface measurements. At least a portion of the interface measurements may be predicted values.
摘要:
A method for managing quality of service (QoS) in a wireless local area network begins by receiving a traffic flow. The traffic flow is mapped to a traffic class (TC), based on QoS requirements of the traffic flow. A transmission budget of an access class (AC) is calculated, each AC including at least one TC. A determination is made whether the traffic flow can be admitted, by calculating whether the transmission budget can support the traffic flow. If the traffic flow is admitted, the parameters of the TC are adjusted and collisions in the TC between existing traffic flows and the newly admitted traffic flow are managed.
摘要:
A method and system for managing radio resources in a time-slotted wireless communication system is based on the quality of service (QoS) information of a user. A plurality of time slots of a radio resource are sorted into a plurality of different categories, such as high QoS time slots, high capacity time slots, and balanced time slots. Each category is associated with a different level of QoS. QoS information with respect to a user is obtained in response to a radio resource request received from the user. The user is associated with a particular category of time slots based on the QoS information of the user.