Abstract:
A system for servicing streaming media requests. The system includes stream director nodes and intelligent stream engine nodes, such as permanent storage devices with network interfaces. The stream director node receives a streaming media request and enqueues the request until all resources on a path from the stream engine node having the media object being requested to the user/client system have been reserved. Once reserved, the enqueued request is then serviced by requesting the stream object from the stream engine node, which then transfers the requested stream object between the stream engine node and the user/client system over the prepared path without involving the stream director node. Upon completion, the prepared path is torn down. In one embodiment the prepared path is a Label Switched Path. A provision is made for balancing the load among the stream engine nodes by duplicating stream objects on other stream engine nodes.
Abstract:
Embodiments of the disclosure provide techniques for measuring congestion and controlling quality of service to a shared resource. A module that interfaces with the shared resource monitors the usage of the shared resource by accessing clients. Upon detecting that the rate of usage of the shared resource has exceeded a maximum rate supported by the shared resource, the module determines and transmits a congestion metric to clients that are currently attempting to access the shared resource. Clients, in turn determine a delay period based on the congestion metric prior to attempting another access of the shared resource.
Abstract:
A method for receiving a multimedia broadcast multicast service (MBMS) by a user equipment (UE) in a wireless communication system; the UE therefore; a method for transmitting an MBMS by a base station (BS) in a wireless communication system; and the BS therefore are discussed. The method for receiving an MBMS by a UE according to one embodiment includes transmitting one or more system information blocks (SIBs); receiving a first MBMS interest indication message indicating whether MBMS reception is prioritized above unicast reception, when a predetermined SIB related to MBMS service continuity is included in the one or more SIBs; and receiving a second MBMS interest indication message according to a change of priority between the MBMS reception and the unicast reception.
Abstract:
A lightweight throttling mechanism allows for dynamic control of access to resources in a distributed environment. Each request received by a server of a server group is parsed to determine tokens in the request, which are compared with designated rules to determine whether to process or reject the request based on usage data associated with an aspect of the request, the token values, and the rule(s) specified for the request. The receiving of each request can be broadcast to throttling components for each server such that the global state of the system is known to each server. The system then can monitor usage and dynamically throttle requests based on real time data in a distributed environment.
Abstract:
A system, computer readable medium and method of load balancing of requests between Diameter-enabled network devices is disclosed. Processing occurs at a signal controller in communication with a first Diameter-enabled network device and a second Diameter-enabled network device, request handling capacity of at least the second Diameter-enabled network device. One or more tokens are allocated for inbound requests from the first Diameter-enabled network device to the second Diameter-enabled network device. The second Diameter-enabled network device is notified of the one or more allocated tokens for handling a corresponding number of requests from the first Diameter-enabled network device. Transmission of the corresponding number of requests from the first Diameter-enabled network device to the second Diameter-enabled network device is coordinated by the signal controller.
Abstract:
A method for receiving a multimedia broadcast multicast service (MBMS) by a user equipment (UE) in a wireless communication system, the method comprising acquiring, by the UE, a predetermined system information block (SIB) from a base station (BS); and upon acquiring the predetermined SIB, transmitting an MBMS interest indication message by the UE to the BS. The predetermined SIB includes information related to MBMS service continuity. Whether the transmitting of the MBMS interest indication message is allowed is provided to the UE through the predetermined SIB.
Abstract:
In accordance with an embodiment, described herein is a system and method for management of quota in a cloud computing environment. In accordance with an embodiment, a tenant manager component enables configuration and management of tenants within the cloud environment, wherein the tenants can utilize services and resources within the cloud environment. The tenant manager enables quotas to be associated with one or more tenants restricting their provisioning or usages of the services and resources. An elasticity manager component determines usage of the cloud environment services and resources by the one or more tenants, and provides usage information to the tenant manager, for use in managing the one or more tenants in accordance with their quotas.
Abstract:
A system and method for the management of client computing device content requests by service providers are provided. The requested content corresponds to content organized as a series of ordered frames, which include a number of reference frames. The management of the content requests can include the selection of computing devices corresponding to various Point of Presence locations for providing requested content. The selection of the computing devices can incorporate logic related to the delivery of a first subset of the content from a Point of Presence based on minimizing delivery latencies. The selection of the computing devices can incorporate logic related to the delivery of a second subset of the content from a second Point of Presence based on minimizing costs associated with delivery of the second subset.
Abstract:
Methods and systems for efficient allocation of resources between child nodes of a parent node in a hierarchical system. The parent node has a limited number of resources available in a resource allocation phrase. The limited number of resources are allocated according to requests from the child nodes in the resource allocation phase. It is determined whether at least one of the child nodes has a request not met by the allocated resources. A bookmark associated with the child node is set for the additional required resources. Additional resources are allocated to the child node according to the bookmark in a subsequent resource allocation phase.
Abstract:
A system, apparatus, and method for transmitting data in a broadcast mode to multiple devices operating in a network. The invention enables the efficient utilization of bandwidth while providing a desired level of quality of service for the applications executing on the devices that utilize the broadcasted data. The invention utilizes a set of bandwidth constraints in combination with a set of heuristics and rules for the allocation and re-allocation of bandwidth among multiple applications in a manner that minimizes the impact on the quality of service metrics of importance to the affected applications when contention exists for the network resources. The present invention implements processes to cause the quality of service provided to each application to degrade smoothly, with certain priorities and guarantees being maintained. The present invention also provides event segmentation and reassembly functions for applications, and includes reliability mechanisms to increase the ability to provide data to client devices that have not been actively receiving for significant periods of time.