Abstract:
Provided herein are compositions and methods for removing a variety of pollutants from wastewater. Such compositions are obtained by immobilizing barium-based hybrid materials, such as BaSO4:APRB. Such compositions are easy to separate from the treated wastewater. After separation, the compositions, which include the pollutants, may be conveniently further separated from the pollutants and thus recovered for use again.
Abstract:
An apparatus and method for video coding having intra-slice deblocking, intra-slice adaptive loop filter, and intra-slice adaptive offset are disclosed. In a video coding system, a picture is often divided into slices and each slice is independently processed so that errors or missing data from one slice cannot propagate to any other slice within the picture. In the recent high efficiency video coding (HEVC) development, deblock filtering (DF), adaptive loop filter (ALF) and adaptive offset (AO) may be applied to reconstructed slices. When the processing is applied across slice boundaries, it may rely on pixels outside the current slice and cause dependency of the current slice on other slice(s). Consequently, the DF/ALF/AO processing on a reconstructed slice may have to wait until the reconstructed slices that it is dependent from complete the DF/ALF/AO processing. To overcome the slice boundary issue, intra-slice DF/ALF/AO is developed that does not rely on any pixel outside the currently slice. An optional slice boundary filter may be applied to slice boundaries after all slices are processed by the intra-slice DF/ALF/AO.
Abstract:
A circuit layout structure includes a metal interlayer dielectric layer surrounding a metal interconnect and a metal pattern within a scrub line. The scrub line is in the vicinity of the metal interlayer dielectric layer and the metal interconnect. The metal pattern or the metal interconnect are suitably segregated to reduce a capacitance charging effect.
Abstract:
A method compresses synthetic aperture radar (SAR) data by sampling the SAR data into blocks and transforming each block to a corresponding block of transform coefficients. Each block of transform coefficient is quantized according to a quantization parameter to obtain a corresponding block of quantized transform coefficients, which are demultiplexed into sets of blocks of quantized transform coefficients. The quantized transform coefficients in the blocks in each set are arithmetically encoding in parallel according to a probability model to produce an intermediate bitstream for each set of blocks. The encoding of the quantized transform coefficients of one block is independent of the quantized transform coefficients of a successive block. The intermediate of bitstreams are then multiplexed to a compressed bitstream, which can be transmitted, or stored, for subsequent decoding to construct an SAR image.
Abstract:
A detection method and system that allows detecting an opaque logo after it has appeared in the digital video program for a short period of time, by deriving and analyzing the stochastic characteristics of the video signal along the temporal axis.
Abstract:
A method performs inverse tone mapping of an image in a decoder. For each block of each color channel of the image the following steps are performed. A scaling factor is determined for a current block of the image by adding a predicted scaling factor for the current block to a difference between the predicted scaling factor and the scaling factor of an adjacent block. An offset value for the current block is determined by adding a predicted offset for the current block to a difference between the predicted offset value and the offset value of the adjacent block. The scaling factor and the offset value are applied to pixel intensity values of the current block to produce a mapped block in which a bit-depth of the mapped block is greater than the bit-depth of the current block.
Abstract:
Methods and apparatus for concealing corrupted blocks of streaming data are disclosed. It is determined whether a subdivision of the streaming data is a corrupt subdivision. The corrupt subdivision is concealed using a previously reconstructed or concealed subdivision in a manner that does not require information from pairs of direct neighbor subdivisions that have not been previously reconstructed or concealed.
Abstract:
A method of improving the lighting conditions of a real scene or video sequence. Digitally generated light is added to a scene for video conferencing over telecommunication networks. A virtual illumination equation takes into account light attenuation, lambertian and specular reflection. An image of an object is captured, a virtual light source illuminates the object within the image. In addition, the object can be the head of the user. The position of the head of the user is dynamically tracked so that an three-dimensional model is generated which is representative of the head of the user. Synthetic light is applied to a position on the model to form an illuminated model.
Abstract:
A video transcoding method is provided for transcoding a first signal stream compressed by a first coding scheme to a second signal stream compressed by a second coding scheme. The method employs an adaptive frame rate and a joint temporal-spatial rate control technique, such that the overall quality of compressed MPEG video can be significantly enhanced when the transcoding is controlled in the joint temporal (picture or frame rate) and spatial (quantization) domains. One embodiment considers transcoding from high bit rate video with larger image size (e.g. 4CIF/4SIF, CIF) coded by one coding technique, e.g., MPEG-2 to a lower bit rate video with smaller image size (e.g. CIF, QCIF) coded by the same or another coding technique, e.g., MPEG-4.
Abstract:
A method and system process transform blocks according to quantization matrices in a video coding system. Embodiments of the present invention derive one or more derived quantization matrices from one or more initial quantization matrices or from one previously derived quantization matrix. In one embodiment, the initial quantization matrices include a 4×4 and 8×8 quantization matrices, which can be either default or user-defined. All quantization matrices larger than 8×8 can be derived from the 4×4 and 8×8 initial quantization matrices. Non-square quantization matrices can be derived from at least one initial square quantization matrix or at least one derived square quantization matrix. Individual initial quantization matrices may be used to derive respective larger quantization matrices. Furthermore, the individual initial quantization matrices may be derived from larger quantization matrices designed for corresponding transform sizes. Syntax design also enables the quantization matrix representation.