摘要:
A magnetic field sensor includes a lead frame, a semiconductor die supporting a magnetic field sensing element, a non-conductive mold material enclosing the die and a portion of the lead frame, a ferromagnetic mold material secured to the non-conductive mold material and a securing mechanism to securely engage the mold materials. The ferromagnetic mold material may comprise a soft ferromagnetic material to form a concentrator or a hard ferromagnetic material to form a bias magnet. The ferromagnetic mold material may be tapered and includes a non-contiguous central region, as may be an aperture or may contain the non-conductive mold material or an overmold material. Further embodiments include die up, lead on chip, and flip-chip arrangements, wafer level techniques to form the concentrator or bias magnet, integrated components, such as capacitors, on the lead frame, and a bias magnet with one or more channels to facilitate overmolding.
摘要:
An angle sensor to provide sensor-to-magnet misalignment detection and correction capability in rotation angle measurement applications is presented. The angle sensor has magnetic field sensing elements to sense magnetic field associated with a rotating magnet. The angle sensor includes circuitry to generate signals based on the sensing by the sensing elements. The signals provide information that can be combined according to an error function to provide misalignment detection. The angle sensor can be used with or can be incorporated in an angle measurement device that employs a processing unit to produce a rotation angle value. In one embodiment, the processing unit is configured to implement the error function and correct the angle value for detected misalignment. In another embodiment, the error function is performed by a programming device and detected misalignment is corrected through mechanical adjustment of sensor-to-magnet position.
摘要:
An integrated circuit can have a first substrate supporting a magnetic field sensing element and a second substrate supporting another magnetic field sensing element. The first and second substrates can be arranged in a variety of configurations. Another integrated circuit can have a first magnetic field sensing element and second different magnetic field sensing element disposed on surfaces thereof.
摘要:
A magnetic field sensor includes built in self-test circuits that allow a self-test of most of, or all of, the circuitry of the magnetic field sensor, including self-test of a magnetic field sensing element used within the magnetic field sensor, while the magnetic field sensor is functioning in normal operation.
摘要:
Magnetic field sensors have a magnetic field sensing element and also a feedback circuit to provide a gain-adjustment signal to affect a sensitivity associated with the magnetic field sensing element. In some arrangements, the feedback circuit can include piezoresistors to sense a strain of a substrate over which the magnetic field sensor is disposed. With these arrangements, the feedback circuit can generate the gain-adjustment signal in accordance with the sensed strain. In other arrangements, the feedback circuit can generate pulsed magnetic fields proximate to the magnetic field sensing element in order to directly measure the sensitivity of the magnetic field sensing element. With these arrangements, the feedback circuit can generate the gain-adjustment signal in accordance with the sensed sensitivity.
摘要:
An electronic circuit for sensing a current includes a circuit board having first and second major opposing surfaces and a current conductor for carrying the current. The current conductor includes a circuit trace disposed upon the circuit board. The electronic circuit also includes an integrated circuit disposed upon and electrically coupled to the circuit board at a position so as to straddle the current conductor.
摘要:
A magnetic field sensor includes built in self-test circuits that allow a self-test of most of, or all of, the circuitry of the magnetic field sensor, including self-test of a magnetic field sensing element used within the magnetic field sensor, while the magnetic field sensor is functioning in normal operation.
摘要:
An electronic circuit includes a magnetoresistance element for providing an output signal proportional to a magnetic field. The magnetoresistance element also has a hysteresis characteristic. The electronic circuit also includes at least one of a reset conductor or a bias conductor disposed proximate to the magnetoresistance element. For embodiments having a reset conductor, the electronic circuit is configured to generate a reset current carried by the reset conductor in response to the comparison. In response to the reset current, the reset conductor is configured to generate a reset magnetic field at the magnetoresistance element to temporarily force the magnetoresistance element to a saturation region of the hysteresis characteristic.
摘要:
The invention provides a current sensor that may be folded over a conductor without the need to sever the conductor or thread the conductor through the current sensor. In one embodiment, the current sensor includes an outer body having a first folding portion and a second folding portion coupled to the first folding portion. The current sensor also includes a soft ferromagnetic body disposed within the outer body comprising a first core element and a second core element. The first and second core elements form a lumen when the first and second folding portions are folded. The lumen is configured to receive a conductor. The current sensor also includes a magnetic field detector to sense a current in the conductor. The magnetic field detector is disposed at least partially between the first and second core elements when the first and second folding portions are folded.
摘要:
An integrated circuit current sensor includes a lead frame having at least two leads coupled to provide a current conductor portion, and a substrate having a first surface in which is disposed one or more magnetic field sensing elements, with the first surface being proximate to the current conductor portion and a second surface distal from the current conductor position. In one particular embodiment, the substrate is disposed having the first surface of the substrate above the current conductor portion and the second surface of the substrate above the first surface. In this particular embodiment, the substrate is oriented upside-down in the integrated circuit in a flip-chap arrangement. The current sensor can also include an electromagnetic shield disposed between the current conductor portion and the magnetic field sensing elements.