摘要:
Methodology enabling a reduction in a density difference between two complementary exposure masks and/or windows of a layout and an apparatus for performing the method are disclosed. Embodiments include: determining a layer of an IC design having features to be resolved by first and second masks; determining a difference of density by comparing a first density of a first set of the features with a second density of a second set of the features; determining a region on the layer of a first feature to be resolved by the first mask; and inserting, within the region, a polygon to be resolved by the second mask based on the difference of density.
摘要:
A process and apparatus are provided for automated pattern-based semiconductor design layout correction. Embodiments include scanning a drawn semiconductor design layout to determine a difficult-to-manufacture pattern within the drawn semiconductor design layout based on a match with a pre-characterized difficult-to-manufacture pattern, determining a corrected pattern based on a pre-determined correlation between the corrected pattern and the pre-characterized difficult-to-manufacture pattern, and replacing the difficult-to-manufacture pattern with the corrected pattern within the drawn semiconductor design layout.
摘要:
A method for fabricating an integrated circuit is disclosed that includes, in accordance with an embodiment, providing a double patterning technology-compliant logical design for the integrated circuit, the logical design including a plurality of elements; scoring the design of one or more of the plurality of elements to produce a design score; modifying the design based at least in part on the design score; generating a mask set implementing the modified logical design; and employing the mask set to implement the logical design in and on a semiconductor substrate.
摘要:
An optimal assist feature rules set for an integrated circuit design layout is created using inverse lithography. The full chip layout is lithographically simulated, and printability failure areas are determined. The features are analyzed for feature layout patterns, and inverse lithography is performed on the unique feature layouts to form assist features. The resulting layout of assist features is analyzed to create an assist feature rules set. The rules can then be applied to a photomask patterned with the integrated circuit design layout to print optimal assist features. The resulting photomask may be used to form an integrated circuit on a semiconductor substrate.
摘要:
A method of forming a feature on a device is disclosed. A photo resist layer is formed over the device and a dipole illuminator having a pole orientation axis in a first direction is used to expose a first geometrical pattern onto the resist layer. The first geometrical pattern is substantially oriented in the same direction as the pole orientation axis of the dipole illuminator. A dipole illuminator having a pole orientation axis substantially orthogonal to the first direction then is used to expose a second geometrical pattern onto the resist layer. The second geometrical pattern is oriented substantially orthogonal to the first direction.
摘要:
Layout patterns are identified as problematic when they have particular parameters required to exceed standard limits. The problematic layout patterns are associated with preferred design rules in a DRC-Plus deck. Layout data is scanned to generate match locations of any problematic layout patterns. The match locations are forwarded to a DRC engine that compares layout parameters of the match locations to corresponding preferred layout rules in the DRC-Plus deck. The DRC-Plus check results are used to modify the layout to improve manufacturability of the layout.
摘要:
A method includes generating a layout for an integrated circuit device in accordance with a plurality of layout design rules. A plurality of metrology sites on the layout associated with at least one subset of the layout design rules is identified. A metrology tag associated with each of the metrology sites is generated. At least one metrology recipe for determining a characteristic of the integrated circuit device is generated based on the metrology tags. Metrology data is collected using the at least one metrology recipe. A selected layout design rule in the at least one subset is modified based on the metrology data.
摘要:
A method includes providing an initial IC device design, which design has a desired set of electrical characteristics. A layout representation corresponding to the initial device design is generated. A simulation tool is used to determine whether the layout representation corresponds to an IC device design having the desired electrical characteristics. In addition, the variation between structures within IC device designed due to process variations is evaluated using the simulation tool. This variation can be used to determine whether the design is optimized.
摘要:
Layout patterns are identified as problematic when they have particular parameters required to exceed standard limits. The problematic layout patterns are associated with preferred design rules in a DRC-Plus deck. Layout data is scanned to generate match locations of any problematic layout patterns. The match locations are forwarded to a DRC engine that compares layout parameters of the match locations to corresponding preferred layout rules in the DRC-Plus deck. The DRC-Plus check results are used to modify the layout to improve manufacturability of the layout.
摘要:
A chromeless phase-shift mask (CPM) for imaging sub-100 nm contact holes and a method of making the same are disclosed. The CPM includes a plurality of features formed on a substrate and a plurality of suppressors formed on the substrate. Light energy passing through the plurality of suppressors substantially reduces an interference generated by light energy passing through features within an optical proximity of each other, thereby significantly improving contrast and depth of focus. The plurality of features can be formed in a grid pattern, and the suppressors can be formed in adjacent corners of each feature. The size and location of the suppressors can be varied with respect to the features to obtain a desired image.