摘要:
A process and apparatus are provided for automated pattern-based semiconductor design layout correction. Embodiments include scanning a drawn semiconductor design layout to determine a difficult-to-manufacture pattern within the drawn semiconductor design layout based on a match with a pre-characterized difficult-to-manufacture pattern, determining a corrected pattern based on a pre-determined correlation between the corrected pattern and the pre-characterized difficult-to-manufacture pattern, and replacing the difficult-to-manufacture pattern with the corrected pattern within the drawn semiconductor design layout.
摘要:
A process and apparatus are provided for automated pattern-based semiconductor design layout correction. Embodiments include scanning a drawn semiconductor design layout to determine a difficult-to-manufacture pattern within the drawn semiconductor design layout based on a match with a pre-characterized difficult-to-manufacture pattern, determining a corrected pattern based on a pre-determined correlation between the corrected pattern and the pre-characterized difficult-to-manufacture pattern, and replacing the difficult-to-manufacture pattern with the corrected pattern within the drawn semiconductor design layout.
摘要:
A method for fabricating an integrated circuit is disclosed that includes, in accordance with an embodiment, providing a drawn layout logical design for the integrated circuit, the logical design including a plurality of patterns; checking the plurality of patterns for double patterning technology compliance; identifying a non-double patterning technology compliant pattern; providing a double patterning technology compliant pattern for replacing the identified non-double patterning technology compliant pattern, thereby creating a modified logical design; generating a mask set implementing the modified logical design; and employing the mask set to implement the modified logical design in and on a semiconductor substrate.
摘要:
Methods for fabricating semiconductor devices are provided. In an embodiment, a method of fabricating a semiconductor device includes scanning a circuit design layout and proposing patterns for decomposed layouts. The proposed patterns are then compared with a library of prior patterns including a category of forbidden patterns and a category of preferred patterns. If a selected proposed pattern matches a forbidden pattern, the selected proposed pattern is eliminated. If the selected proposed pattern matches a preferred pattern, then the selected proposed pattern is identified for use in the decomposed layouts. Decomposed layouts are generated from the identified patterns. A plurality of masks is fabricated based on the decomposed layouts. Then a multiple patterning lithographic technique is performed with the plurality of masks on a semiconductor substrate.
摘要:
Methods for fabricating semiconductor devices are provided. In an embodiment, a method of fabricating a semiconductor device includes scanning a circuit design layout and proposing patterns for decomposed layouts. The proposed patterns are then compared with a library of prior patterns including a category of forbidden patterns and a category of preferred patterns. If a selected proposed pattern matches a forbidden pattern, the selected proposed pattern is eliminated. If the selected proposed pattern matches a preferred pattern, then the selected proposed pattern is identified for use in the decomposed layouts. Decomposed layouts are generated from the identified patterns. A plurality of masks is fabricated based on the decomposed layouts. Then a multiple patterning lithographic technique is performed with the plurality of masks on a semiconductor substrate.
摘要:
Layout patterns are identified as problematic when they have particular parameters required to exceed standard limits. The problematic layout patterns are associated with preferred design rules in a DRC-Plus deck. Layout data is scanned to generate match locations of any problematic layout patterns. The match locations are forwarded to a DRC engine that compares layout parameters of the match locations to corresponding preferred layout rules in the DRC-Plus deck. The DRC-Plus check results are used to modify the layout to improve manufacturability of the layout.
摘要:
Layout patterns are identified as problematic when they have particular parameters required to exceed standard limits. The problematic layout patterns are associated with preferred design rules in a DRC-Plus deck. Layout data is scanned to generate match locations of any problematic layout patterns. The match locations are forwarded to a DRC engine that compares layout parameters of the match locations to corresponding preferred layout rules in the DRC-Plus deck. The DRC-Plus check results are used to modify the layout to improve manufacturability of the layout.
摘要:
Methodology enabling a reduction in a density difference between two complementary exposure masks and/or windows of a layout and an apparatus for performing the method are disclosed. Embodiments include: determining a layer of an IC design having features to be resolved by first and second masks; determining a difference of density by comparing a first density of a first set of the features with a second density of a second set of the features; determining a region on the layer of a first feature to be resolved by the first mask; and inserting, within the region, a polygon to be resolved by the second mask based on the difference of density.
摘要:
A method of correcting a lithographic mask is disclosed. The method can include detecting a location of the mask that corresponds to a wafer location having a structure that is printed with a larger than desired dimension and reducing a thickness of at least a portion of a mask feature corresponding to the wafer structure to locally increase transmissivity of the mask feature.
摘要:
A method includes specifying a plurality of optical proximity correction metrology sites on a wafer. Metrology data is collected from at least a subset of the metrology sites. Data values are predicted for the subset of the metrology sites using an optical proximity correction design model. The collected metrology data is compared to the predicted data values to generate an optical proximity correction metric. A problem condition associated with the optical proximity correction design model is identified based on the optical proximity correction metric.