Abstract:
According to an embodiment, an electrically switchable mirror includes: a first electrically switchable layer of cholesteric liquid crystal material, the first electrically switchable layer having a first state in which right-handed circularly polarized light incident thereon is reflected and left-handed circularly polarized light incident thereon is transmitted and a second state wherein right-handed and left-handed circularly polarized light incident thereon are transmitted; a second electrically switchable layer of cholesteric liquid crystal material, the second electrically switchable layer having a first state in which left-handed circularly polarized light incident thereon is reflected and right-handed circularly polarized light incident thereon is transmitted and a second state wherein right-handed and left-handed circularly polarized light incident thereon are transmitted; and a first electrically switchable wave plate disposed between the first and second electrically switchable layers.
Abstract:
Methods and systems for duct protection of a vehicle are provided. The methods and systems provided include an apparatus for directing flow discharged from a facture in a duct. The apparatus includes a ballistic containment layer, an air containment layer substantially surrounding the ballistic containment layer, and a vent defined in the ballistic containment layer and the air containment layer. The vent is configured to direct a flow discharged from the duct fracture.
Abstract:
A system for magnetic characterization of an induction heating wire including a conductor having a first end and a second end longitudinally opposed from the first end, wherein the induction heating wire extends along a portion of the conductor and is electrically isolated from the conductor, an alternating current power source electrically coupled with the conductor to pass an electric current between the first end and the second end, a current sensor positioned to sense the electric current, a sensing wire including a first lead and an opposed second lead, wherein the sensing wire defines a first loop having a first polarity and a second loop having a second, opposite polarity, the second loop being connected to the first loop at a crossover, and wherein the induction heating wire extends through the first loop, and a voltage sensor positioned to sense a voltage across the first lead and the second lead.
Abstract:
Embodiments described herein provide magnetic permeability measurements of ferromagnetic wires. In one embodiment, an apparatus comprises a non-magnetic wire retainer having a circular groove that holds a ferromagnetic wire for measurement. The apparatus further comprises a magnetic field generator proximate to the non-magnetic wire retainer that provides a substantially uniform magnetic field along a circumference of the circular groove. The apparatus further comprises a force sensor mechanically coupled to the magnetic field generator that measures an attractive force between the magnetic field generator and the ferromagnetic wire for determining the magnetic permeability of the ferromagnetic wire.
Abstract:
The present disclosure relates to the passive initiation and release of incident energy-dissipating material from locations on an incident energy target surface as a counter measure response for the protection of a platform. The response is activated over a predetermined area or areas on an incident energy target surface in response to an incident directed energy sensed on a target surface.
Abstract:
Superconducting joints and methods of forming the same are described. A particular method includes arranging two or more terminals relative to one another and to one or more interconnect layers, wherein each terminal includes bulk high-temperature superconductive material and each terminal is coupled to at least one end of one or more high-temperature superconductive tapes. The method also includes heating the one or more interconnect layers to form a high-temperature superconductive electrical connection between the two or more terminals.
Abstract:
An induction welding coil includes a spine having a planar body with opposing ends, and a pair of prongs extending perpendicularly from the opposing ends of the spine. Each of the prongs has a planar body, wherein the spine and the pair of prongs are formed from a ferrite material to define a ferrite core. The induction welding coil further includes a coil wire having a plurality of winding that surround the planar body of the spine.
Abstract:
A smart susceptor assembly, including a smart susceptor, and a cladding disposed on at least a portion of the smart susceptor, wherein the cladding includes an electrically conductive material.
Abstract:
A system for generating an energy beam based laser includes an apparatus for receiving an energy beam and for generating an energy beam based laser. The apparatus is configurable or controllable for tuning an output wavelength of the laser generated by the apparatus using the energy beam. The apparatus includes a first component for producing a first magnetic field oriented in a first direction and a second component for producing a second magnetic field oriented in a second direction substantially opposite to the first direction. A channel through the apparatus is defined by the first component and the second component through which the energy beam passes to generate the laser at an output of the apparatus. The apparatus is configurable or controllable for modifying at least one of the first magnetic field and the second magnetic field for tuning the output wavelength of the laser.
Abstract:
Methods of embedding an elongate susceptor within a thermoplastic body and systems that perform the methods are disclosed herein. The methods include extending the elongate susceptor such that an extended portion of the elongate susceptor extends between a guide structure and a body-contacting structure. The methods also include heating a segment of the elongate susceptor to produce a heated portion of the elongate susceptor. The methods further include pressing a leading region of the heated portion of the elongate susceptor through a body surface of the thermoplastic body and into the thermoplastic body. The methods also include operatively translating at least one of the guide structure, the body-contacting structure, and an application tool that includes the guide structure and the body-contacting structure along an embedment pathway for the elongate susceptor.