Abstract:
Adhesive bondlines in a cell-based structural array are thermally cured using tooling blocks inserted into the cells. The tooling blocks have embedded susceptors that are inductively heated by an alternating electromagnetic field generated by an electromagnet.
Abstract:
An induction welding system is provided. The system includes at least one induction coil configured to generate an alternating magnetic field, and a smart susceptor film sized to be positioned between a first component and a second component to be welded to the first component. The smart susceptor film includes a thermoplastic resin, and a plurality of metal alloy wires disposed in the thermoplastic resin such that the plurality of metal alloy wires are oriented substantially parallel to the generated alternating magnetic field.
Abstract:
An apparatus may include a curing apparatus and an electrical coupler. The curing apparatus may include one or more electrical components related to curing a composite material inside a vacuum chamber at least partially defined by a flexible wall. The electrical coupler may be connected to the curing apparatus. The coupler may include a first set of one or more electrical contacts electrically connected to the one or more electrical components of the curing apparatus inside the vacuum chamber. The coupler may be configured to hermetically extend through a hole in the flexible wall. Such extension may dispose the first set of one or more electrical contacts in a space outside of the vacuum chamber for electrical interconnection of the one or more electrical components of the curing apparatus inside the vacuum chamber with circuitry disposed in the space outside of the vacuum chamber.
Abstract:
Embodiments described herein provide magnetic permeability measurements of ferromagnetic wires. In one embodiment, an apparatus comprises a non-magnetic wire retainer having a circular groove that holds a ferromagnetic wire for measurement. The apparatus further comprises a magnetic field generator proximate to the non-magnetic wire retainer that provides a substantially uniform magnetic field along a circumference of the circular groove. The apparatus further comprises a force sensor mechanically coupled to the magnetic field generator that measures an attractive force between the magnetic field generator and the ferromagnetic wire for determining the magnetic permeability of the ferromagnetic wire.
Abstract:
A system for heating a shape memory alloy (SMA) actuator may include an SMA actuator, a smart susceptor, a plurality of induction coils, and a control module. The SMA actuator may have at least one layup. The SMA actuator may be selectively heated to a transition temperature. The smart susceptor may be in thermal contact with the at least one layup of the SMA actuator. The induction heating coils may be configured to receive an alternating current and generate a magnetic field based on the alternating current. The magnetic field may create an eddy current in at least one of the SMA actuator and the smart susceptor to heat the SMA actuator to the transition temperature. The control module may be configured to drive the alternating current supplied to the induction heating coils.
Abstract:
A susceptor wire array. The array includes a first susceptor wire comprising an alloy having a first Curie temperature point and a second susceptor wire comprising an alloy having a second Curie temperature point, the second Curie temperature point is different than the first Curie temperature point of the first susceptor wire. In one susceptor wire arrangement, the second Curie temperature point of the second susceptor wire is lower than the first Curie temperature point of the first susceptor wire. In another susceptor wire arrangement, the array further comprises a third susceptor wire, the third susceptor wire comprising an alloy having a third Curie temperature point. The third Curie temperature point of the third susceptor wire may be different than the first Curie temperature point of the first susceptor wire.
Abstract:
A coaxially arranged smart susceptor conductor, comprising a smart susceptor core comprising an alloy having a first Curie temperature point and a first smart susceptor shell coaxially arranged around the smart susceptor core. The first smart susceptor shell comprising a second Curie temperature point that is different than the first Curie temperature point of the smart susceptor core. In one arrangement, the second Curie temperature point of the first smart susceptor shell is lower than the first Curie temperature point of the smart susceptor core. In another arrangement, the smart susceptor conductor further comprises a second smart susceptor shell disposed about the first smart susceptor shell. The second smart susceptor shell comprising a third Curie temperature point.
Abstract:
A method for consolidating a pre-form made of powder, comprising: (a) placing the pre-form between smart susceptors; (b) heating the smart susceptors to a leveling temperature by applying a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors; (c) applying consolidation pressure to the pre-form at least during a time period subsequent to the temperature of the smart susceptors reaching the leveling temperature; and (d) while consolidation pressure is being applied, applying a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form. The strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form will rapidly oscillate at a substantially constant temperature. The pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form is attained during phase oscillation.