摘要:
A novel process effective for the removal of organic sulfur compounds from liquid hydrocarbons is disclosed. The process more specifically addresses the removal of thiophenes and thiophene derivatives from a number of petroleum fractions, including gasoline, diesel fuel, and kerosene. In the first step of the process, the liquid hydrocarbon is subjected to oxidation conditions in order to oxidize at least some of the thiophene compounds to sulfones. Then, these sulfones can be catalytically decomposed to hydrocarbons (e.g. hydroxybiphenyl) and volatile sulfur compounds (e.g. sulfur dioxide). The hydrocarbon decomposition products remain in the treated liquid as valuable blending components, while the volatile sulfur compounds are easily separable from the treated liquid using well-known techniques such as flash vaporization or distillation.
摘要:
Chiral stationary phases perform well when the underlying support for the chiral organic material is coated onto a silica pore widened by a hydrothermal treatment. The resulting silica is amorphous with a unimodal distribution of large pores. A variety of chiral stationary phases perform well and are distinguished, inter alia, by the treatment, if any, prior to coating the chiral organic material.
摘要:
A process of effecting an acid catalyzed reaction wherein a reactant capable of undergoing an acid catalyzed reaction is contacted with an acid functionalized organically-bridged polysilsesquioxane catalyst where all of the acid functionality is covalently bonded to the organic portion of an organically-bridged polysilsesquioxane framework has been developed. The acid functionalized organically-bridged polysilsesquioxane is formed by polymerizing a monomer through sol-gel processing to form an organically-bridged polysilsesquioxane, reacting an acid group onto the organic portion of the organically-bridged polysilsesquioxane, and recovering the acid functionalized product. An embodiment of the invention is where the acid catalyzed reaction is the hydration of olefins, alkylation, acylation, isomerization, or aldol condensation/elimination. A specific embodiment of the invention is effecting the aldol condensation/elimination reaction of acetone with itself to form mesityl oxide by contacting the acetone with an effective amount of sulfonated phenylene-bridged polysilsesquioxane.
摘要:
Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.
摘要:
Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.
摘要:
Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method comprising the steps of diluting the biomass-derived pyrolysis oil with a phenolic-containing diluent to form a diluted pyoil-phenolic feed is provided. The diluted pyoil-phenolic feed is contacted with a deoxygenating catalyst in the presence of hydrogen at hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.
摘要:
Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150° C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.
摘要:
A process for stabilizing pyrolysis oil has been developed. The process involves heating the pyrolysis oil at a temperature of about 40° C. to about 85° C. under a reducing atmosphere for a time to stabilize the oil. The reducing atmosphere or gas is preferably hydrogen.
摘要:
Catalytic processes for the conversion of 2,5-dimethyl furan (DMF) to para-xylene are described. Para-xylene is a key product that is currently obtained commercially from petroleum sources. However, it has now been determined that the cycloaddition of ethylene to DMF provides an alternative route to para-xylene. Advantageously, the DMF starting material for the processes may be synthesized from carbohydrates (e.g., glucose or fructose), thereby providing a pathway that relies at least partly, if not completely, on renewable feedstocks.
摘要:
Methods for deoxygenating treated biomass-derived pyrolysis oil are provided. The treated biomass-derived pyrolysis oil is exposed to a catalyst having a neutral catalyst support such as a non-alumina metal oxide support, a theta alumina support, or both. The non-alumina metal oxide support may be a titanium oxide (TiO2) support, a silicon oxide support, a zirconia oxide (ZrO2) support, a niobium oxide (Nb2O5) support, or a support having a mixture of non-alumina metal oxides. The catalyst may include a noble metal or a Group VIII non-noble metal and a Group VIB non-noble metal on the neutral catalyst support. The treated biomass-derived pyrolysis oil is introduced into a hydroprocessing reactor in the presence of the catalyst under hydroprocessing conditions to produce low oxygen biomass-derived pyrolysis oil.