摘要:
The present invention is directed to a sheet-form environment purifying material comprising particles of metal and/or metal oxide consisting essentially of at least one member being selected from the group consisting of manganese, copper, zinc, iron, vanadium, nickel, titanium, palladium, platinum, manganese oxide, copper oxide, zinc oxide, iron oxide, vanadium oxide, nickel oxide, titanium oxide, palladium oxide, and platinum oxide, adsorbent particles consisting essentially of at least one member selected from the group consisting of activated carbon, zeolite, silica gel, sepiolite, activated alumina and activated clay, thermoplastic resin particles being selected from ultrahigh-molecular weight polyethylene, polyethylene, polycarbonate, polyamide acrylonitrile-butadiene-styrene resins, polyimide, polyvinyl chloride, cellulose acetate, polysulfone, polystyrene phthalate and polypropylene, and an air-permeable sheet of fibrous. The metal and/or metal oxide particles and the adsorbent particles are respectively bound to the thermoplastic resin particles while retaining their inherent surface areas and performances without being covered by the thermoplastic resin layers, and the thermoplastic resin particles are joined to the fibrous substrate. The present invention is also directed to a process for making the environment purifying material which comprises the steps of mixing all the particles and heating the mixture at a temperature not lower than the melting point of the thermoplastic resin and not higher than the thermal decomposition temperature thereof. The environment purifying material of the present invention is useful as deodorizers and harmful gas removers.
摘要:
A catalyst composition comprising a perfluorinated ion-exchange polymer containing sulfonic acid groups supported on an inert carrier having a hydrophobic surface with a mean pore diameter of at least 1000 .ANG.. Use of this catalyst provides improved hydrocarbon conversion processes for oligomerization of olefins, hydration of olefins and hydrolysis of esters.
摘要:
Novel amorphous siliceous materials having shape-selective sorption properties are prepared by a novel process of (1) hydrolyzing an organosilicon compound of the formula R[Si]X.sub.3 alone or in the presence of one or more compounds either of the formula R'.sub.n MY.sub.m, wherein R and R' are non-hydrolyzable organic groups, X is a hydrolyzable group, Y is the same as X or oxygen, [Si] is silicon or ##STR1## M is metal or non-metal, including silicon, of any group of the Periodic Table other than IA, IIA, VIIA or O, m is a number over 0 and up to 8 and n is 0 or a number less than 8, or an inorganic compound consisting of an anionic portion made up of M and Y and a cationic portion of either hydrogen, alkali or alkaline earth metal or ammonium; (2) effecting condensation polymerization of the hydrolyzed product; and (3) calcining the resulting polymerized product to convert all the R and R' groups to hydroxy or hydrogen. Pore size distribution of the final composition is primarily controlled by appropriate selection of the R group of the R[Si]X.sub.3 precursor. The amorphous synthetic solids of this invention are useful in such conversion processes as shape-selective cracking, hydrocracking, hydrogenation-dehydrogenation, oxidation, and methanation processes. They are also useful as sorbents and catalyst supports.
摘要:
A process for producing ceramic, ceramic-metal or metal catalyst supports or catalysts with open, interconnecting pores. The process forming a dense agglomeration of spherical, cylindrical or similar bodies of generally uniform size. These bodies are connected together at their mutual contact points, thereby producing a framework corresponding generally to the macropores and pore interconnections of the finished material in terms of size and arrangement. The framework is then filled with a suspension containing as solid components the catalyst support material and/or the catalyst material. The suspension can also contain a binding agent. The framework is subsequently dissolved away after at least the partial hardening of the cast mass without destroying the structure produced during hardening.
摘要:
A highly versatile and efficient catalytic converter for internal combustion engine exhaust which includes a porous ceramic monolithic support provided with through holes substantially uniformly throughout a first portion for passing the exhaust in contact with catalyst metal values deposited on walls defining the holes. The support is provided with a second portion wherein similar holes are free of deposited catalyst and adapted to prevent passage of the exhaust. Also disclosed are an installation assembly including the converter and a process for preparing the converter.
摘要:
Method for making a catalytic bed for a gas generator by saturating an inert porous support material with a molybdenum resinate and turpentine solution, and decomposing the solution to leave a residue coating on the inert porous support material and thereby form a catalytic bed.
摘要:
ALPHA ALUMINA OF RELATIVELY HIGH SURFACE AREA IS PRODUCED BY (1) IMPREGNATING COMMERCIAL ALUMINA XEROGEL WITH CARBON-FORMING MATERIAL, (2) HEATING AT MEDIUM TEMPERATURE TO CARBONIZE, (3) HEATING THE RESULTING CARBON-CONTAINING ALUMINA AT VERY HIGH TEMPERATURE IN INERT ATMOSPHERE THEREBY CONVERTING TO ALPHA ALUMINA OF RELATIVELY HIGH SURFACE AREA WHILE PREVENTING REACTIVE SINTERING DURING PHASE CHANGE, AND (4) FINALLY REMOVING THE CARBON THEREFROM BY CONVERSION OF THE CARBON TO A GASEOUS CARBON COMPOUND.
摘要:
A method to produce a NOx trap composition, and its use in a NOx trap and in an exhaust system for internal combustion engines, is disclosed. The NOx trap composition is produced by heating an iron-containing zeolite in the presence of an inert gas and an organic compound to produce a reductively calcined iron/zeolite. A palladium compound is then added to the reductively calcined iron/zeolite, and the resulting Pd—Fe/zeolite is then calcined at 400 to 600° C. in the presence of an oxygen-containing gas to produce the NOx trap composition. The NOx trap composition shows low temperature NO capacity below 200° C., as well as an additional NO storage temperature window in the 200 to 250° C. range.