Abstract:
An exemplary method includes an interface device 1) detecting a request provided by a user device for a server to transmit data to the user device by way of a base station and a wireless network that connects the user device to the base station, 2) pre-fetching, in response to the request, the data from the server, 3) transmitting the pre-fetched data to the base station for forwarding by the base station to the user device by way of the wireless network, 4) dynamically receiving, as the interface system transmits the pre-fetched data to the base station, queue occupancy information from the base station, and 5) using the queue occupancy information to perform flow control with respect to the transmission of the pre-fetched data by the interface system to the base station. Corresponding methods and systems are also disclosed.
Abstract:
Content originated by a mobile device may be transmitted, via multicast, to one or more other mobile devices. In one implementation, a method may include receiving, from a mobile device attached to a wireless network, a request to initiate a multicast transmission of content generated by the mobile device. The method may further include determining one or more wireless coverage areas to which the multicast transmission of the content is to be provided; receiving, from the mobile device, a unicast transmission of the content; and distributing the received content, via one or more multicast data channels that are broadcast in the one or more wireless coverage areas.
Abstract:
A first device may receive provisioning information for a second device; establish a tunnel with the second device within a first network based on receiving the provisioning information; provide the provisioning information to the second device to cause the second device to gather or process data within the first network; and receive a command instruction from a user device via a second network. The command instruction may relate to the data gathered or processed by the second device. The first network may be separate from the second network. The first device may communicate with the second device within the first network and independently of the second network to process the command instruction; form a response to the command instruction based on processing the command instruction; and provide the response to the command instruction towards the user device.
Abstract:
The device type of a user computing device may be used to optimize network communication sessions. In one implementation, an indication of the device type of the user computing device may be received and a communication profile for the user computing device may be determined. The communication profile may be associated with values for a number of parameters relating to one or more communication protocols used to implement communication sessions with the user computing device. One or more network elements, that are involved in the communication sessions with the user computing device, may be provisioned, to cause the one or more network elements to implement the communication protocols, for the user computing device, using the values for the parameters relating to the one or more communication protocols.
Abstract:
A cloud-based telecommunications infrastructure may include one or more cloud-based network instances that each provide telecommunications services to mobile devices. A proxy may be used to select, based on initial communications from the mobile devices, one of the cloud-based network instances to service the mobile devices. Communications to the mobile devices may then be routed to the selected cloud-based network instances.
Abstract:
Quality of service may be achieved in a network using time-bases queues that are associated with different maximum latency periods. A device may receive a request to allocate resources for a packet flow, the resources being allocated at a number of network devices. The device may select, in response to the request, a set of queues that includes a queue selected at each of the network devices, the selected queue, at each of the network devices, being associated with a maximum latency period. The device may transmit one or more messages, to the network devices, indicating that the selected set of queues are to be used for buffering of the packet flow during packet scheduling.
Abstract:
An edge device may obtain, via a base station, one or more respective requests from one or more user devices to access content. The edge device may determine a total number of the one or more user devices and may determine that the total number of the one or more user devices satisfies a threshold. The edge device may determine, based on the total number of the one or more user devices satisfying the threshold, a latency requirement associated with the content and may determine whether the edge device can satisfy the latency requirement. The edge device may selectively cause, based on determining whether the edge device can satisfy the latency requirement, the edge device or a different edge device to send the content to the one or more user devices via the base station.
Abstract:
A method, a device, and a non-transitory storage medium are described in which a mobile edge computing service is provided. The mobile edge computing service provides for the hosting of a function of an application in a mobile edge computer network, and another function of the application to be hosted in a network external from the mobile edge computer network. The mobile edge computing service includes an on-boarding service that obtains subscription information and policies. The mobile edge computing service also includes network resource availability and security measure verifications.
Abstract:
A device may receive data indicating a required quality of service (QoS), and may receive radio access network (RAN) information associated with a RAN, wherein the RAN information is provided by a centralized unit (CU) of the RAN. The device may provide the RAN information to a multi-access edge computing (MEC) platform, and may receive, from the MEC platform, a QoS request that requests the required QoS. The device may provide the QoS request to the CU, and may receive a QoS response to the QoS request. The device may provide the QoS response to a policy control function (PCF) of a core network, and may receive an indication of approval of the QoS response from the PCF. The device may cause, based on receiving the indication of approval, the required QoS to be implemented by the MEC platform and network devices associated with the core network.
Abstract:
Systems and methods provide reliable voice connections dual-connectivity environments, given limitations of available spectrum. A system includes a first wireless station and a second wireless station. The first wireless station provides a shared spectrum of a first frequency band, the shared spectrum including a first spectrum for a first cellular wireless standard and a second spectrum for a second cellular wireless standard. The second wireless station is at least partially within a coverage area of the first wireless station and provides a third spectrum for the second cellular wireless standard. The third spectrum is a millimeter wave (mmWave) spectrum. The first wireless station broadcasts a parameter barring an end device in an idle mode from camping on the second spectrum. The first wireless station or the second wireless station triggers the end device to swap to the second spectrum when a paging request for a voice call is received.