摘要:
A backside-illuminated sensor including a semiconductor substrate. The semiconductor substrate has a front surface and a back surface. A plurality of pixels are formed on the front surface of the semiconductor substrate. At least one pixel includes a photogate structure. The photogate structure has a metal gate that includes a reflective layer.
摘要:
An integrated circuit device is provided. The integrated circuit device can include a substrate; a first radiation-sensing element disposed over a first portion of the substrate; and a second radiation-sensing element disposed over a second portion of the substrate. The first portion comprises a first radiation absorption characteristic, and the second portion comprises a second radiation absorption characteristic different from the first radiation absorption characteristic.
摘要:
A plurality of apertures is formed in at least one first insulating layer disposed over a sensor formed in a semiconductor substrate. A second insulating layer is disposed over the at least one first insulating layer and the plurality of apertures in the at least one first insulating layer. The apertures form hollow regions in the at least one first insulating layer over the sensor, allowing more light or energy to pass through the at least one first insulating layer to the sensor, and increasing the sensitivity of the sensor.
摘要:
Provided are a semiconductor device and a method for its manufacture. In one example, the method includes forming an isolation structure having a first refraction index over a sensor embedded in a substrate. A first layer having a second refraction index that is different from the first refraction index is formed over the isolation structure. The first layer is removed from at least a portion of the isolation structure. A second layer having a third refraction index is formed over the isolation structure after the first layer is removed. The third refraction index is substantially similar to the first refraction index.
摘要:
An image sensor device and fabrication method thereof wherein a substrate having at least one shallow trench isolation structure therein is provided. At least one photosensor and at least one light emitting element, e.g., such as MOS or LED, are formed in the substrate. The photosensor and the light emitting element are isolated by the shallow trench isolation structure. An opening is formed in the shallow trench isolation structure to expose part of the substrate. An opaque shield is formed in the opening to prevent photons from the light emitting element from striking the photosensor.
摘要:
A plurality of apertures is formed in at least one first insulating layer disposed over a sensor formed in a semiconductor substrate. A second insulating layer is disposed over the at least one first insulating layer and the plurality of apertures in the at least one first insulating layer. The apertures form hollow regions in the at least one first insulating layer over the sensor, allowing more light or energy to pass through the at least one first insulating layer to the sensor, and increasing the sensitivity of the sensor.
摘要:
An integrated circuit device is provided. The integrated circuit device can include a substrate; a first radiation-sensing element disposed over a first portion of the substrate; and a second radiation-sensing element disposed over a second portion of the substrate. The first portion comprises a first radiation absorption characteristic, and the second portion comprises a second radiation absorption characteristic different from the first radiation absorption characteristic.
摘要:
A method of providing metal extension in a backside illuminated image sensor is provided in the present disclosure. In one embodiment, a first set of pads and a second set of pads, and a metal layer are provided in a backside illuminated image sensor. The first set of pads are electrically coupled to the second set of pads through the metal layer, and a pad in the second set of pads is exposed to the surface of the backside illuminated image sensor for testing. In an alternative embodiment, a first set of pads, at least one second pad directly positioned over the first set of pads are provided in a backside illuminated image sensor. The first set of pads are electrically coupled to the at least one second pad and the at least one second pad is exposed to the surface of the backside illuminated image sensor for testing.
摘要:
A backside illuminated sensor includes a semiconductor substrate having a front surface and a back surface, and a plurality of pixels formed on the front surface of the semiconductor substrate. The sensor further includes a plurality of absorption depths formed within the back surface of the semiconductor substrate. Each of the plurality of absorption depths is arranged according to each of the plurality of pixels. A method for forming a backside illuminated includes providing a semiconductor substrate having a front surface and a back surface and forming a first, second, and third pixel on the front surface of the semiconductor substrate. The method further includes forming a first, second, and third thickness within the back surface of the semiconductor substrate, wherein the first, second, and third thickness lies beneath the first, second, and third pixel, respectively.
摘要:
Provides is a backside-illuminated sensor including a semiconductor substrate having a front surface and a back surface. A plurality of image sensor elements are formed on the front surface of the semiconductor substrate. At least one of the image sensor elements includes a transfer transistor and a photodetector. The gate of the transfer transistor includes an optically reflective layer. The gate of the transfer transistor, including the optically reflective layer, overlies the photodetector. In one embodiment, the gate overlies the photodetector by at least 5%.