Abstract:
A catalyst separation system which separates catalyst particles from liquid hydrocarbons synthesized by a chemical reaction of a synthesis gas including a hydrogen and a carbon monoxide as the main components, and a slurry having solid catalyst particles suspended in a liquid, the catalyst separation system is provided with: a reactor; a storage tank which stores the slurry drawn from the reactor; a plurality of filters which filters the slurry; and a filtrate recovery vessel which recovers a filtrate which has passed through the plurality of filters, wherein the plurality of filters is disposed in series in a flow line for the slurry from the storage tank to the filtrate recovery vessel.
Abstract:
There is provided a synthesis reaction system which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including hydrogen and carbon monoxide as main components, and a slurry having solid catalyst particles suspended in liquid and which extracts the hydrocarbon compound from the slurry. The synthesis reaction system includes a reactor main body which accommodates the slurry, a separator which separates the hydrocarbon compound included in the slurry from the slurry, a first flow passage which allows the slurry including the hydrocarbon compound to flow to the separator from the reactor main body, a second flow passage which allows the slurry to flow to the reactor main body from the separator, and a fluid supply nozzle which supplies a fluid toward at least any one of the separator, the first flow passage, and the second flow passage.
Abstract:
A hydrocarbon compound synthesis reaction unit which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including a hydrogen and a carbon monoxide as the main components, and a slurry having a solid catalyst suspended in liquid hydrocarbons, the hydrocarbon compound synthesis reaction unit is provided with: a reactor which contains the slurry inside, into which the synthesis gas is introduced, and from which the gas after the reaction is discharged from the top thereof; an internal separation device provided inside the reactor to separate the catalyst and the synthesized liquid hydrocarbons in the slurry; and an external separation device provided outside the reactor to separate the catalyst and the liquid hydrocarbons in the slurry which is extracted from the reactor.
Abstract:
A hydrocarbon synthesis reaction apparatus which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including a hydrogen and a carbon monoxide as the main components, and a slurry having solid catalyst particles suspended in a liquid, the apparatus is provided with: a reactor in which the synthesis gas contacts with the slurry; and an unreacted gas supply device which draws unreacted gas from the reactor, then pressurizes the unreacted gas, and supplies the unreacted gas to a constituent device which constitutes the hydrocarbon synthesis reaction apparatus.
Abstract:
Provided is a preparation method of a catalyst slurry used for synthesizing hydrocarbons by contact with a synthesis gas which includes carbon monoxide gas and hydrogen gas as main components. The method includes the step of preparing the catalyst slurry having solid catalyst particles suspended in a liquid medium, wherein adopting a petroleum solvent which is a liquid at normal temperature and normal pressure as the liquid medium.
Abstract:
A synthesis reaction system is provided with: a reactor which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including hydrogen and carbon monoxide as main components, and a slurry having solid catalyst particles suspended in liquid; a separator which separates the hydrocarbon compound from the slurry; and a filtering device which filters the hydrocarbon compound extracted from the separator to trap powdered catalyst particles.
Abstract:
A method of extracting the contents from the inside of a reactor kept at high temperature and high pressure includes the steps of introducing the contents of the reactor into a pipe having an internal space which communicates with the reactor, closing the pipe to enclose the contents in the internal space, removing unnecessary gas from the internal space, and supplying an inert gas to the internal space, thereby replacing the contents enclosed in the internal space with the inert gas. The contents are discharged from the internal space by replacing the contents enclosed in the internal space with the inert gas.
Abstract:
A solder material test apparatus includes a control unit and a storage unit which stores master data in advance in which a printing process time when a printing process is performed by using a test-sample solder material is associated with deterioration degree data of the test-sample solder material at the printing process time. The control unit includes a deterioration degree data acquiring unit which acquires deterioration degree data for indicating a deterioration degree of a test-sample solder material, a reading unit which reads a printing process time associated with deterioration degree data set as a limit value with reference to master data and reads a printing process time associated with the deterioration degree data acquired by the deterioration degree data acquiring unit, an operating unit which operates an available remaining time that indicates difference between the printing process times, and a display control unit which informs the available remaining time to a user.
Abstract:
Before an electronic component is mounted on a board 2, only a cream solder 3 printed on the board 2 is irradiated with a light beam which the board 2 is scanned based on printing position information obtained by printing position obtaining means such as CAD data, and thereby inspection object intensity of an infrared ray having a specific wave number, which is reflected from the cream solder 3, is detected by the irradiation of the cream solder 3 with the light beam. The cream solder 3 printed on the board 2 is set to an inspection object, and a deterioration parameter indicating a relative degree of deterioration of the cream solder 3 of the inspection object to a cream solder 3 of a comparison object is computed based on comparison object intensity of the infrared ray having the specific wave number and the inspection object intensity. The comparison object intensity of the infrared ray is detected as a reflected light beam when the cream solder 3 of the comparison object is irradiated with the light beam.
Abstract:
Disclosed is a semiconductor memory device capable of arbitrarily setting an upper limit of the number of error corrections during a test operation. The semiconductor memory device has a counter, a register, and a comparison circuit. The counter counts the number of error corrections. The register, when an upper limit setting signal (in the case shown in FIG. 1, an external upper limit fetch signal) is externally inputted to change the upper limit of the number of error corrections, changes the upper limit. The comparison circuit compares the number of error corrections with the changed upper limit.