Abstract:
A method for calculating a position of a receiver. The method includes determining a first position of the receiver at a first time using data from satellites and determining a second position of the receiver at a second time using the first position and data from a non-satellite sensor. The method also includes calculating the positions of the satellites at the second time and comparing, for each satellite, the calculated position with a known position at the second time.
Abstract:
There is provided in a first form, a detector. The detector includes a photosensitive detector element; and a reflecting surface disposed about and proximal to the photosensitive detector element, wherein the reflecting surface is configured to reflect radiation impinging on the reflecting surface onto the photosensitive detector element; and wherein the reflecting surface is further configured to determine a field of regard greater than a predetermined field of view.
Abstract:
A method. At least some embodiments are a method including detecting docking of a mobile computer system to a docking device. In response to detecting the docking, the method further includes connecting an external data communication network to a bridge logic device in the mobile computer system via the docking device, and uploading, via the external data communication network, first data to a non-volatile random access memory coupled to the bridge logic device in the mobile computer system. The method further includes uploading, via the external data communication network, second data to the non-volatile random access memory coupled to the bridge logic device in the mobile computer system, the second data comprising programming instructions for execution on a computer system external to the mobile computer system.
Abstract:
A method including receiving at a synchronizing node a first reference frame from a first reference node at a first time and storing a first time value representing the first time, and calculating a timing estimator by subtracting a minimum time value, representing the distance from the synchronizing node to the first reference node, from the first time value. The method includes receiving at the synchronizing node a second reference frame at a second time and transmitting from the synchronizing node to the first reference node a short timing contention time frame. The method includes receiving at the synchronizing node from the first reference node an arrival time value representing the time at which the first reference node received the short timing contention frame and calculating a time drift from the first arrival time value and the second time value and adjusting the timing estimator based on the time drift.
Abstract:
There is provided in a first form, an apparatus. The apparatus includes a detector array having a plurality of elements, the detector array comprising a photosensitive material and a photosensitive region disposed about and distinct from the plurality of elements. Electrical circuitry is coupled to each of the elements of the detector array. The electrical circuitry is configured to generate a set of first signals, each first signal of the set of first signals is based on optical energy impinging on a respective one of the plurality of elements of the detector array. The photosensitive region is coupled to the electrical circuitry and the electrical circuitry is configured to generate a second signal having a first value if no portion of optical energy impinging on the plurality of elements of the detector array impinges on the region disposed about the plurality of elements of the detector array. The second signal has a second value, distinct from the first value, if a portion of an optical energy impinging on the plurality of elements of the detector array impinges on the photosensitive region disposed about the plurality of elements of the detector array, the portion of the optical energy impinging on the photosensitive region disposed about the plurality of elements exceeds a threshold energy.
Abstract:
A system includes a threat warning system and an countermeasure system. The threat warning system generates threat data that includes at least a threat coordinate value. The countermeasure system includes a wide-angle laser beam director and the infrared counter measure system receives the threat data including the threat coordinate value from the threat warning system and causes the beam director to direct a divergent laser beam based on the threat coordinate value.
Abstract:
A method for calculating a position of a receiver. The method includes determining a first position of the receiver at a first time using data from satellites and determining a second position of the receiver at a second time using the first position and data from a non-satellite sensor. The method also includes calculating the positions of the satellites at the second time and comparing, for each satellite, the calculated position with a known position at the second time.
Abstract:
In accordance with one embodiment of the present disclosure, a system may include a polarizing beamsplitter for splitting one or more unpolarized rays received from an illumination source into a first polarized component and a second polarized component, the first polarized component and the second polarized component having orthogonal polarizations to each other. The system may also include a half-wave plate for rotating the second polarized component to the same polarization as the first polarized component. The system may further include a lens group for passing the first polarized component to a target plane as a first polarized ray, and further for separately passing the second polarized component to the target plane as a second polarized ray.
Abstract:
A display system includes a projector system to create a plurality of image streams and a plurality of combiners, each corresponding to one of the directions of the image streams and to reflect at least a portion of the image stream received at that combiner. The projector system includes an illumination source that emits electromagnetic radiation within a predetermined spectral band, an image generator that ascribes image characteristics to the radiation to create a plurality of image streams, and an image separation module to direct the image streams in a plurality of directions.
Abstract:
A sonar buoy includes a fuselage having a tube-like shape, one or more wings coupled to the fuselage, an engine coupled to the fuselage and operable to propel the sonar buoy through flight, and a guidance computer operable to direct the sonar buoy to a predetermined location. The sonar buoy further includes a sonar detachably coupled to the fuselage and forming at least a part of the fuselage, and a rocket motor detachably coupled to the fuselage. The one or more wings are operable to be folded into a position to allow the sonar buoy to be disposed within a launch tube coupled to a vehicle and to automatically deploy to an appropriate position for flight after the sonar buoy is launched from the launch tube. The rocket motor propels the sonar buoy from the launch tube and detaches from the fuselage after launch.