Abstract:
An Anti-Terrorism water quality monitoring system for continuously monitoring a potable water treatment system and related potable water distribution network that provides potable water to a municipality, city, housing development or other potable water consumer. The system includes the collection of data from the water distribution system and from the water treatment facility and from advanced separation processes which are integrated into analytical instruments. The data collected are stored in a remote database on a remote server computer or bank of computers and accessible by Homeland Security or its designated agency. Preferred parameters of monitoring include the turbidity and disinfectant such as chlorine, hypochlorous acid, sodium hypochlorite, calcium hypochloritc, ozone, chlorine dioxide, chloramines, hydrogen peroxide, peracetic acid.
Abstract:
Oxidation/reduction measurement is described. An aspect provides an oxidation/reduction quantification method, including: receiving intermittent oxidizer/reducer reference measurements from one or more reference sensors; receiving one or more substantially continuous oxidizer/reducer-related measurements from one or more corroboration sensors; and processing the one or more substantially continuous oxidizer/reducer-related measurements with the intermittent oxidizer/reducer reference measurements to generate substantially continuous representative oxidizer/reducer measurements. Other aspects are described.
Abstract:
A spatial frequency optical measurement instrument is provided according to the invention. The instrument includes a spatial frequency mask positioned in a light path and configured to encode light with spatial frequency information, a light receiver positioned to receive the light encoded with the spatial frequency information, wherein the light encoded with the spatial frequency information has been interacted with a sample material, and a processing system coupled to the light receiver and configured to determine a change in the spatial frequency information due to the interaction of the light with the sample material.
Abstract:
An instrument (100) is provided according to an embodiment of the invention. The instrument (100) includes an interface (101) configured to receive a Doppler measurement signal and a processing system (112) coupled to the interface (101) and receiving the Doppler measurement signal. The processing system (112) is configured to generate a two-sided velocity spectrum including a plurality of discrete frequency bins from the Doppler measurement signal, with the two-sided velocity spectrum distinguishing spectral elements, and process one or more velocity spectrum bin pairs against a plurality of local gate thresholds, with the one or more velocity spectrum bin pairs being substantially symmetrically located about one or more carrier wave bins and wherein each velocity spectrum bin pair is processed against a corresponding local gate threshold of the plurality of local gate thresholds.
Abstract:
A total organic carbon (TOC) fluid sensor (100) is provided according to an embodiment of the invention. The TOC fluid sensor (100) includes a first oxidization cell (101A), a second oxidization cell (101B), a gas permeable membrane (106) configured to allow carbon dioxide to equilibriate between the first oxidization cell (101A) and the second oxidization cell (101B), a first conductivity sensor (136A), and a second conductivity sensor (136B). The TOC fluid sensor (100) oxidizes a fluid portion in the first oxidization cell (101A) to create carbon dioxide, equilibriates the carbon dioxide between the first oxidization cell (101A) and the second oxidization cell (101B), obtains a second cell conductivity information, and determines a TOC quantity in the fluid under test from the second cell conductivity information when the first cell oxidization is substantially complete.
Abstract:
A spatial frequency optical measurement instrument (100) is provided according to the invention. The instrument (100) includes a spatial frequency mask (120) positioned in a light path and configured to encode light with spatial frequency information, a light receiver (140) positioned to receive the light encoded with the spatial frequency information, wherein the light encoded with the spatial frequency information has been interacted with a sample material, and a processing system (180) coupled to the light receiver (140) and configured to determine a change in the spatial frequency information due to the interaction of the light with the sample material.
Abstract:
A standard media suspension body (150) for verification and calibration of an optical particulate measurement instrument and configured to be at least partially immersed in a sample fluid is provided according to the invention. The body (150) includes a substantially solid outer surface including a first end (151) and a second end (152) disposed along an axis of illumination A and at least one outer surface (153). The first end (151) is configured to admit impinging light. The suspension body further includes an inner volume. At least a portion of the inner volume includes a substantially suspended light scattering material (155) that is configured to scatter a predetermined quantum of the admitted light. The suspension body (150) further includes an end cap (156) formed on the second end (152) and comprising a light absorbing material. Light exiting the second end (152) is substantially absorbed by the end cap (156).
Abstract:
A mixer for analytical application mixes a container of fluid without a magnetic stir bar. A device for testing a liquid for particles can use the mixer. The mixing can occur in a sealed container, and liquid can be transmitted to the device from the sealed container.
Abstract:
A sonde cleaning brush is disclosed that has a plurality of bristles extending from the brush surface. The bristles have a stiffener attached to the bristles causing the stiffness of the bristles to increase along the length of the brush while preserving the flexibility of the bristles perpendicular to the brush length. There may be one or more stiffeners attached to the brush bristles.
Abstract:
A sensor for measurement of free chlorine and of total chlorine in aqueous solution including a working electrode having a self-assembled monolayer (SAM) formed on the surface thereof, producing a barrier which reduces the generation of background currents when electrical potentials are applied to the electrode, and blocks the reduction or oxidation of interfering species in the solution, is described. Such SAMs have also been found to block the efficient reduction of chlorine as well. However, N,N-diethyl-p-phenylenediamine (DPD) has been found to effectively transport electrons across the SAM; that is, an oxidized form of DPD produced by a reaction with chlorine is capable of penetrating the SAM such that the reduction of the oxidized DPD species can occur. The generated reduction current is correlated with the concentration of chlorine in solution. Total chlorine may be determined by the addition of an iodide salt.