摘要:
A method of using a tungsten inert gas (TIG) welding flux for super duplex stainless steel (SDSS) is used to solve the problems of low weld depth/width ratio, low corrosion resistance, and arc blow existing in the conventional TIG welding flux for duplex stainless steel. The TIG welding flux for SDSS includes 20-30 wt % of silicon dioxide (SiO2), 20-25 wt % of titanium dioxide (TiO2), 15-20 wt % of vanadium dioxide (VO2), 10-15 wt % of molybdenum trioxide (MoO3), 10-15 wt % of zirconium diboride (ZrB2), 5-10 wt % of aluminum nitride (AlN), 5-10 wt % of manganese carbonate (MnCO3) and 5-10 wt % of nickel carbonate (NiCO3).
摘要:
A TIG welding flux for dissimilar steels is used to solve the problem that the conventional friction stir welding procedure for butt-joint welding a stainless steel workpiece and a carbon steel workpiece cannot be used on site, as well as the problem that the increased operating time and manufacturing cost due to forming bevel faces on both the stainless steel workpiece and the carbon steel workpiece. The TIG welding flux for dissimilar steels includes 25-35 wt % of silicon dioxide (SiO2), 20-30 wt % of cobalt (II, III) oxide (Co3O4), 15-20 wt % of manganese (II, III) oxide (Mn3O4), 10-15 wt % of nickel (III) oxide (Ni2O3), 7-12 wt % of molybdenum trioxide (MoO3), 6-11 wt % of manganese (II) carbonate (MnCO3), 5-10 wt % of nickel (II) carbonate (NiCO3), and 2-4 wt % of aluminum fluoride (AlF3).
摘要:
A tungsten inert gas (TIG) welding flux for super duplex stainless steel (SDSS) is used to solve the problems of low weld depth/width ratio, low corrosion resistance, and arc blow existing in the conventional TIG welding flux for duplex stainless steel. The TIG welding flux for SDSS includes 20-30 wt % of silicon dioxide (SiO2), 20-25 wt % of titanium dioxide (TiO2), 15-20 wt % of vanadium dioxide (VO2), 10-15 wt % of molybdenum trioxide (MoO3), 10-15 wt % of zirconium diboride (ZrBr2), 5-10 wt % of aluminum nitride (AlN), 5-10 wt % of manganese carbonate (MnCO3) and 5-10 wt % of nickel carbonate (NiCO3).
摘要:
The invention provides an ignition flux for arc stud welding, including 30-55 wt % SiO2, 30-55 wt % NiO, 10-35 wt % AlF3, and 5-25 wt % NiF2, or including 30-55 wt % TiO2, 30-55 wt % NiO, 10-35 wt % AlF3, and 5-25 wt % NiF2. As such, the electric arc can be easily created and smoothly formed. The invention further provides an arc stud welding method utilizing such ignition flux. As such, the fastener and the metal workpiece can be tightly connected together without the need of inserting an ignition tip into the welding portion of a fastener.
摘要:
A medical drill bit comprises an accommodating slot disposed concavely on a main body of the medical drill bit, a separate board disposed in the accommodating slot to separate the accommodating slot into a first slot and a second slot, and a lid engaging with the separate board and covering the accommodating slot. The lid and the separate board do not rotate with the main body when the main body in rotation. The accommodating uses to fill with cooling liquid which able to be pumped out from the accommodating slot, and fresh cooling liquid is able to inject into the accommodating slot for cooling the drill bit in rotation.
摘要:
An electroless plating process includes providing a semiconductor substrate which has a substrate and a copper pillar disposed on the substrate; providing a tin-silver plating solution includes 0.1-50 wt % tin and 1×105-2 wt % silver; and performing a reduction reaction, wherein the semiconductor substrate is disposed in the tin-silver plating solution for making tin and silver of the tin-silver plating solution deposit jointly on the copper pillar surface to form a tin-silver co-deposition layer. The tin-silver co-deposition layer is able to enhance the coupling strength between the copper pillar of the semiconductor substrate and the other semiconductor substrate and is also able to reduce the time and cost of the process performing tin-plating and silver-plating separately.
摘要:
A supercapattery includes at least one tank filled with a conductive material. The conductive material has an arrangement-variable crystal lattice. The conductive material is graphite, grapheme, graphene oxide, a composite of graphite, metal, and a polymer, or a composite of graphene, metal, and a polymer. A magnetic member is mounted outside of the at least one tank. The magnetic member can be supplied with electricity to create a magnetic field. A method for controlling charge/discharge of a supercapattery includes supplying electricity to a supercapattery filled with a conductive material having an arrangement-variable crystal lattice. The crystal lattice of the conductive material supplied with electricity is transformed from an isotropic phase into an electro-nematic phase and absorbs electrons. An external magnetic field is created to return the crystal lattice of the conductive material from the electro-nematic phase to the isotropic phase, releasing the electrons.
摘要:
Electrodes of a solar cell formed by an active solder and a method therefor are provided. The method includes steps of: providing a solar cell substrate; providing an active solder having at least one type of soldering alloy mixed with 6 wt % or less of at least one type of active component and 0.01-2.0 wt % of at least one type of rare earth element (Re); firstly melting the active solder at a temperature lower than 450° C.; then applying the molten active solder on the solar cell substrate (or firstly applying and then melting); and cooling to solidify the active solder, so as to form an electrode pattern.
摘要:
A local resistance heating device, with a controlled atmosphere, includes two end members and a mid member. The two end members are respectively connected with an anode pole and a cathode pole. Each end member has an air channel. The air channel of one of the end members is adapted to connect with an output terminal of a gas supplier, and the air channel of the other one of the end members is adapted to connect with a sucking terminal of the gas supplier. The mid member is arranged between the two end members. The two end members and the mid member jointly define a heating room communicating with the air channels of the two end members.
摘要:
A microfluidic device including a microfluidic channel formed in a face of a substrate. The microfluidic channel is discontinuous and includes a first channel and a second channel not connected to the first channel. A pressure change section is formed between the first and second channels. The first channel is in communication with a first fluid port. The second channel is in communication with a second fluid port. An elastic membrane is applied to the face of the substrate. The elastic membrane includes a deformation area aligned with the pressure change section. A remaining portion of the elastic membrane outside of the deformation area forms a clinging area. The clinging area clings to a remaining area of the face of the substrate outside of the pressure change section. A fluid conveying member is in communication with one of the first and second fluid ports.